Delamination of coatings initiated by small cracks paralleling the free surface is investigated under conditions of high thermal flux associated with a through-thickness temperature gradient. A crack disrupts the heat flow thereby inducing crack tip stress intensities that can become critical. A complete parametric dependence of the energy release rate and mode mix is presented in terms of the ratio of the crack length to its depth below the surface and coefficients characterizing heat transfer across the crack and across the gaseous boundary layer between the surface and the hot gas. Proximity to the surface elevates the local temperature, which in turn, may significantly increase the crack driving force. A detailed assessment reveals that the energy release rates induced by high heat flux are capable of extending subsurface delaminations in thermal barrier coatings, but only when the modulus has been elevated by either calcium-magnesium-alumino-silicate (CMAS) penetration or sintering. Otherwise, the energy release rate remains well below the toughness.

1.
Choi
,
S. R.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 1999, “
Delamination of Multilayer Thermal Barrier Coatings
,”
Mech. Mater.
,
31
, pp.
431
447
. 0167-6636
2.
Rabiei
,
A.
, and
Evans
,
A. G.
, 2000, “
Failure Mechanisms Associated With the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings
,”
Acta Mater.
1359-6454,
48
, pp.
3963
3976
.
3.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2002, “
On the Delamination of Thermal Barrier Coatings in a Thermal Gradient
,”
Surf. Coat. Technol.
,
149
, pp.
179
184
. 0257-8972
4.
Evans
,
A. G.
, and
Hutchinson
,
J. W.
, 2007, “
The Mechanics of Coating Delamination in Thermal Gradients
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
7905
7916
.
5.
Kraemer
,
S.
,
Faulhaber
,
S.
,
Chambers
,
M.
,
Clarke
,
D. R.
,
Levi
,
C. G.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2008, “
Mechanisms of Cracking and Delamination Within Thick Thermal Barrier Systems in Aero-Engines Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Penetration
,”
Mater. Sci. Eng., A
0921-5093,
490
, pp.
26
35
.
6.
Johnson
,
C. A.
, 2007, GE Global Research Center, private communication.
7.
Florence
,
A. L.
, and
Goodier
,
J. N.
, 1960, “
Thermal Stress Due to Disturbance of Uniform Heat Flow
,”
ASME J. Appl. Mech.
,
27
, pp.
635
639
. 0021-8936
8.
Sih
,
G. C.
, 1963, “
On the Singular Character of Thermal Stresses Near a Crack Tip
,”
ASME J. Appl. Mech.
,
28
, pp.
587
589
. 0021-8936
9.
Kuo
,
A. Y.
, 1990, “
Effects of Crack Surface Heat Conductance on Stress Intensity Factors
,”
ASME J. Appl. Mech.
0021-8936,
57
(
2
), pp.
354
358
.
10.
HKS
, 2005,
ABAQUS/Standard User’s Manual
,
6.5 ed.
,
HKS
,
Providence, RI
.
11.
Lee
,
K. Y.
, and
Park
,
S. -J.
, 1995, “
Thermal Stress Intensity Factors for Partially Insulated Interface Crack Under Uniform Heat Flow
,”
Eng. Fract. Mech.
0013-7944,
50
, pp.
475
482
.
12.
Mercer
,
C.
,
Williams
,
J. R.
,
Clarke
,
D. R.
, and
Evans
,
A. G.
, 2007, “
On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-Prime (t′) Yttria-Stabilized Zirconia
,”
Proc. R. Soc. London, Ser. A
1364-5021,
463
, pp.
1393
1408
.
13.
Lampenscherf
,
S.
, 2006, Siemens AG, private communication.
14.
Johnson
,
M.
,
Ruud
,
C. A.
,
Bruce
,
J. A.
, and
Wortman
,
D.
, 1998, “
Relationships between Residual Stress, Microstructure and Mechanical Properties of Electron Beam Physical Vapor Deposition Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
108–109
, pp.
80
85
. 0257-8972
15.
Hutchinson
,
J. W.
, and
Suo
,
Z.
, 1992, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
. 0065-2156
You do not currently have access to this content.