The dynamic stability of a two degrees-of-freedom system under bounded noise excitation with a narrowband characteristic is studied through the determination of moment Lyapunov exponents. The partial differential eigenvalue problem governing the moment Lyapunov exponent is established. For weak noise excitations, a singular perturbation method is employed to obtain second-order expansions of the moment Lyapunov exponents and Lyapunov exponents, which are shown to be in good agreement with those obtained using Monte Carlo simulation. The different cases when the system is in subharmonic resonance, combination additive resonance, and combined resonance in the absence of noise, respectively, are considered. The effects of noise and frequency detuning on the parametric resonance are investigated.

1.
Arnold
,
L.
, 1984, “
A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems
,”
SIAM J. Appl. Math.
0036-1399,
44
, pp.
793
802
.
2.
Sri Namachchivaya
,
N.
, and
Vedula
,
L.
, 2000, “
Stabilization of Linear Systems by Noise: Application to Flow Induced Oscillations
,”
Dyn. Stab. Syst.
0268-1110,
15
(
2
), pp.
185
208
.
3.
Lin
,
Y. K.
, and
Li
,
Q. C.
, 1993, “
New Stochastic Theory for Bridge Stability in Turbulent Flow
,”
J. Eng. Mech.
0733-9399,
119
(
1
), pp.
113
121
.
4.
Li
,
Q. C.
, and
Lin
,
Y. K.
, 1995, “
New Stochastic Theory for Bridge Stability in Turbulent Flow: II
,”
J. Eng. Mech.
0733-9399,
121
, pp.
102
116
.
5.
Poirel
,
D.
, and
Price
,
S. J.
, 2003, “
Random Binary (Coalescence) Flutter of a Two-Dimensional Linear Airfoil
,”
J. Fluids Struct.
,
18
, pp.
23
42
. 0889-9746
6.
Arnold
,
L.
,
Oeljeklaus
,
E.
, and
Pardoux
,
E.
, 1986, “
Almost Sure and Moment Stability for Linear Itô Equations
,”
Lyapunov Exponents
(
Lecture Notes in Mathematics
Vol.
1186
),
L.
Arnold
and
V.
Wihstutz
, eds.,
Springer-Verlag
,
Berlin
, pp.
85
125
.
7.
Arnold
,
L.
,
Kliemann
,
W.
, and
Oeljeklaus
,
E.
, 1986, “
Lyapunov Exponents of Linear Stochastic Systems
,”
Lyapunov Exponents
(
Lecture Notes in Mathematics
Vol.
1186
),
L.
Arnold
and
V.
Wihstutz
, eds.,
Springer-Verlag
,
Berlin
, pp.
129
159
.
8.
Xie
,
W.-C.
, 2001, “
Moment Lyapunov Exponents of a Two-Dimensional System Under Real Noise Excitation
,”
J. Sound Vib.
0022-460X,
239
(
1
), pp.
139
155
.
9.
Xie
,
W.-C.
, 2003, “
Moment Lyapunov Exponents of a Two-Dimensional System Under Bounded Noise Parametric Excitation
,”
J. Sound Vib.
0022-460X,
263
(
3
), pp.
593
616
.
10.
Zhu
,
J.
,
Wang
,
X. Q.
,
Xie
,
W.-C.
, and
So
,
R. M. C.
, 2008, “
Flow-Induced Instability Under Bounded Noise Excitation in Cross-Flow
,”
J. Sound Vib.
,
312
, pp.
476
495
. 0022-460X
11.
Sri Namachchivaya
,
N.
, and
Van Roessel
,
H. J.
, 2001, “
Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
903
914
.
12.
Sri Namachchivaya
,
N.
, and
Van Roessel
,
H. J.
, 2004, “
Stochastic Stability of Coupled Oscillators in Resonance: A Perturbation Approach
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
759
768
.
13.
Arnold
,
L.
, 1998,
Random Dynamical Systems
,
Springer-Verlag
,
Berlin
.
14.
Xie
,
W.-C.
, 2006,
Dynamic Stability of Structures
,
Cambridge University Press
,
New York
.
15.
Zauderer
,
E.
, 1989,
Partial Differential Equations of Applied Mathematics
,
2nd ed.
,
Wiley
,
New York
.
16.
Myint-U
,
T.
, and
Debnath
,
L.
, 2007,
Linear Partial Differential Equations for Scientists and Engineers
,
4th ed.
,
Birkhäuser
,
Boston
.
17.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
, and
Vastano
,
A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
18.
Xie
,
W.-C.
, and
Huang
,
Q.
, 2009, “
Simulation of Moment Lyapunov Exponents for Linear Homogeneous Stochastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
031001
.
You do not currently have access to this content.