Rotating plates are used as a main component in various applications. Their vibrations are mainly unwanted and interfere with the functioning of the complete system. The present paper investigates the coupling of disk (in-plane) and plate (out-of-plane) vibrations of a rotating annular Kirchhoff plate in the presence of a distributed frictional loading on its surface. The boundary value problem is derived from the basics of the theory of elasticity using Kirchhoff’s assumptions. This results in precise information about the coupling between the disk and the plate vibrations under the action of frictional forces. At the same time we obtain a new model, which is efficient for analytical treatment. Approximations to the stability boundaries of the system are calculated using a perturbation approach. In the last part of the paper nonlinearities are introduced leading to limit cycles due to self-excited vibrations.

1.
Lamb
,
H.
, and
Southwell
,
R.
, 1921, “
The Vibrations of a Spinning Disk
,”
Proc. R. Soc. London, Ser. A
0950-1207,
99
, pp.
272
280
.
2.
Southwell
,
R.
, 1922, “
On the Free Transverse Vibrations of a Uniform Circular Disc Clamped at Its Centre; and on the Effects of Rotation
,”
Proc. R. Soc. London, Ser. A
0950-1207,
101
, pp.
133
153
.
3.
Washizu
,
K.
, 1974,
Variational Methods in Elasticity and Plasticity
,
Pergamon
,
New York
.
4.
Baddour
,
N.
, and
Zu
,
J.
, 2001, “
A Revisit of Spinning Disk Models. Part I: Derivation of Equations of Motion
,”
Appl. Math. Model.
0307-904X,
25
, pp.
541
559
.
5.
Baddour
,
N.
, and
Zu
,
J.
, 2001, “
A Revisit of Spinning Disk Models. Part II: Linear Transverse Vibrations
,”
Appl. Math. Model.
0307-904X,
25
, pp.
561
578
.
6.
Moser
,
F.
,
Fischer
,
M.
, and
Rumold
,
W.
, 2002, “
Dreidimensionale Messung von Betriebsschwingformen quietschender Scheibenbremsen
,”
VDI-Ber.
0083-5560,
1736
, pp.
71
83
.
7.
Mottershead
,
J.
, 1998, “
Vibration- and Friction-Induced Instability in Disks
,”
Shock Vib. Dig.
0583-1024,
30
(
1
), pp.
14
31
.
8.
Ono
,
H.
,
Chen
,
J.
, and
Bogy
,
D. B.
, 1991, “
Stability Analysis for the Head-Disk Interface in a Flexible Disk Drive
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
1005
1014
.
9.
Ouyang
,
H.
, and
Mottershed
,
J. E.
, 2004, “
Dynamic Instability of an Elastic Disk Under the Action of a Rotating Friction Couple
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
753
758
.
10.
Kinkaid
,
N. M.
,
O’Reilly
,
O. M.
, and
Papadopoulos
,
P.
, 2003, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
0022-460X,
267
, pp.
105
166
.
11.
Ibrahim
,
R. A.
, 1994, “
Friction-Induced Vibration, Chatter, Squeal and Chaos, Part I: Mechanics of Contact and Friction
,”
Appl. Mech. Rev.
0003-6900,
47
(
7
), pp.
227
253
.
12.
Tseng
,
J. G.
, and
Wickert
,
J. A.
, 1998, “
Nonconservative Stability of a Friction Loaded Disk
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
922
929
.
13.
Hochlenert
,
D.
,
Spelsberg-Korspeter
,
G.
, and
Hagedorn
,
P.
, 2007, “
Friction Induced Vibrations in Moving Continua and Their Application to Brake Squeal
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
542
549
.
14.
Kirillov
,
O. N.
, and
Seyranian
,
A. P.
, 2004, “
Collapse of the Keldysh Chains and Stability of Continuous Nonconservative Systems
,”
SIAM J. Appl. Math.
0036-1399,
64
(
4
), pp.
1383
1407
.
15.
Seyranian
,
A. P.
, and
Kliem
,
W.
, 2001, “
Bifurcations of Eigenvalues of Gyroscopic Systems With Parameters Near Stability Boundaries
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
199
205
.
16.
Chen
,
J. S.
, and
Jhu
,
J. L.
, 1996, “
On the In-Plane Vibration and Stability of a Spinning Annular Disk
,”
J. Sound Vib.
0022-460X,
195
(
4
), pp.
585
593
.
17.
Hagedorn
,
P.
, 1986, “
Eine Bemerkung zur Momentenimpedanz bei Plattenschwingungen in der Substrukturtechnik
,”
ZAMP
0044-2275,
37
, pp.
293
303
.
18.
Vishik
,
M. I.
, and
Lyusternik
,
L. A.
, 1960, “
The Solution of Some Perturbation Problems for Matrices and Selfadjoint or Non-Selfadjoint Differential Equations I
,”
Russ. Math. Surveys
0036-0279,
15
, pp.
1
73
.
19.
Vishik
,
M. I.
, and
Lyusternik
,
L. A.
, 1960, “
The Asymptotic Behaviour of Solutions of Linear Differential Equations With Large or Quickly Changing Coefficients and Boundary Conditions
,”
Russ. Math. Surveys
0036-0279,
15
, pp.
23
91
.
20.
Vidoli
,
S.
, and
Vestroni
,
F.
, 2005, “
Veering Phenomena in Systems With Gyroscopic Coupling
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
641
647
.
21.
Leissa
,
A.
, 1969, “
Vibrations of Plates
,” NASA, Report No. SP-160.
22.
Günther
,
U.
, and
Kirillov
,
O. N.
, 2006, “
Krein Space Related Perturbation Theory for MHD α2-Dynamos and Resonant Unfolding of Diabolical Points
,”
J. Phys. A
0305-4470,
39
, pp.
10057
10076
.
23.
Jearsiripongkul
,
T.
, 2005, “
Squeal in Floating Caliper Disk Brakes: A Mathematical Model
,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
24.
Renshaw
,
A. A.
, and
Mote
,
C. D.
, 1992, “
Absence of One Nodal Diameter Critical Speed Modes in an Axisymmetric Rotating Disk
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
59
, pp.
687
688
.
25.
Chen
,
J.-S.
, and
Jhu
,
J.-L.
, 1996, “
In-Plane Response of a Rotating Annular Disk Under Fixed Concentrated Edge Loads
,”
Int. J. Mech. Sci.
0020-7403,
38
(
12
), pp.
1285
1293
.
26.
Hochlenert
,
D.
, 2006, “
Selbsterregte Schwingungen in Scheibenbremsen: Mathematische Modellbildung und aktive Unterdrückung von Bremsenquietschen
,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
27.
Kirillov
,
O.
,
Mailybaev
,
A.
, and
Seyranian
,
A.
, 2005, “
Unfolding of Eigenvalue Surfaces Near a Diabolic Point Due to a Complex Perturbation
,”
J. Phys. A
0305-4470,
38
(
24
), pp.
5531
5546
.
28.
Kirillov
,
O. N.
, 2007, “
Destabilization Paradox Due to Breaking the Hamiltonian and Reversible Symmetry
,”
Int. J. Non-Linear Mech.
0020-7462,
42
(
1
), pp.
71
87
.
29.
Merkin
,
D. R.
, 1997,
Introduction to the Theory of Stability
,
Springer
,
New York
.
30.
Seemann
,
W.
, and
Wauer
,
J.
, 1988, “
Vibration of High Speed Disk Rotors
,”
Rotating Machinery Dynamics Proceedings of the Second International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-2)
.
31.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
32.
Doedel
,
E.
,
Pfaffenroth
,
R.
,
Champneys
,
A.
,
Fairgrieve
,
T.
,
Kuznetsov
,
B. S.
, and
Wang
,
X.
, 2001, “
AUTO 2000: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)
,” California Institute of Technology, Technical Report.
This content is only available via PDF.
You do not currently have access to this content.