This paper deals with the dissipation associated with quasistatic microcracking of brittle materials exhibiting softening behavior. For this purpose an elastodamaging cohesive zone model is used, in which cohesive tractions decrease (during crack propagation) with increasing displacement discontinuities. Constant cohesive tractions are included in the model as a limiting special case. Considering a representative volume element containing a dilute distribution of many parallel microcracks, we quantify energy dissipation associated with mode I microcrack propagation. This is done in the framework of thermodynamics, without restricting assumptions on the size of the cohesive zones. Model predictions are compared with exact solutions, which are accessible for constant cohesive tractions. The proposed model reliably predicts both onset of crack propagation and the dissipation during microcracking. It is shown that the energy release rate is virtually equal to the area under the softening curve, if the microscopic tensile strength is at least twice as large as the macroscopic tensile strength. This result justifies approaches relying on the concept of constant energy release rate, such as those frequently used in the engineering practice.

1.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Dordrecht
.
2.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
2nd ed.
,
North-Holland
,
Amsterdam
.
3.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F. -J.
, 2006,
Microporomechanics
,
Wiley
,
New York
.
4.
Dormieux
,
L.
,
Kondo
,
D.
, and
Ulm
,
F. -J.
, 2006, “
A Micromechanical Analysis of Damage Propagation in Fluid-Saturated Cracked Media
,”
C. R. Mec.
1631-0721,
334
(
7
), pp.
440
446
.
5.
Pichler
,
B.
,
Hellmich
,
Ch.
, and
Mang
,
H. A.
, 2007, “
A Combined Fracture-Micromechanics Model for Tensile Strain-Softening in Brittle Materials, Based on Propagation of Interacting Microcracks
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
31
(
2
), pp.
111
132
.
6.
van Vliet
,
M. R. A.
, and
van Mier
,
J. G. M.
, 2000, “
Experimental Investigation of Size Effect in Concrete and Sandstone Under Uniaxial Tension
,”
Eng. Fract. Mech.
,
65
(
2–3
), pp.
165
188
. 0013-7944
7.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
(
2
), pp.
100
104
.
8.
Barenblatt
,
G. I.
, 1959, “
The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks
,”
J. Appl. Math. Mech.
0021-8928,
23
(
3
), pp.
622
636
.
9.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Advances in Applied Mechanics
, Vol.
7
,
Academic
,
London
, pp.
55
129
.
10.
Pichler
,
B.
, and
Dormieux
,
L.
, 2007, “
Cohesive Zone Size of Microcracks in Brittle Materials
,”
Eur. J. Mech. A/Solids
,
26
(
6
), pp.
956
968
. 0021-8928
11.
Glennie
,
E. B.
, 1971, “
A Strain-Rate Dependent Crack Model
,”
J. Mech. Phys. Solids
0022-5096,
19
(
5
), pp.
255
272
.
12.
Siegmund
,
T.
, and
Needleman
,
A.
, 1997, “
A Numerical Study of Dynamic Crack Growth in Elastic-Viscoplastic Solids
,”
Int. J. Solids Struct.
0020-7683,
34
(
7
), pp.
769
787
.
13.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1992, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
40
(
6
), pp.
1377
1397
.
14.
Hillerborg
,
A.
,
Modeér
,
M.
, and
Petersson
,
P. -E.
, 1976, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
0008-8846,
6
(
6
), pp.
773
782
.
15.
Elices
,
M.
,
Guinea
,
G. V.
,
Gómez
,
J.
, and
Planas
,
J.
, 2002, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
0013-7944,
69
(
2
), pp.
137
163
.
16.
Elices
,
M.
, and
Planas
,
J.
, 1996, “
Fracture Mechanics Parameters of Concrete: An Overview
,”
Adv. Cem. Based Mater.
1065-7355,
4
(
3–4
), pp.
116
127
.
17.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
(
20–22
), pp.
2899
2938
.
18.
Yamakov
,
V.
,
Saether
,
E.
,
Phillips
,
D. R.
, and
Glaessgen
,
E. H.
, 2006, “
Molecular-Dynamics Simulation-Based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum
,”
J. Mech. Phys. Solids
0022-5096,
54
(
9
), pp.
1899
1928
.
19.
Bjerke
,
T. W.
, and
Lambros
,
J.
, 2003, “
Theoretical Development and Experimental Validation of a Thermally Dissipative Cohesive Zone Model for Dynamic Fracture of Amorphous Polymers
,”
J. Mech. Phys. Solids
,
51
(
6
), pp.
1147
1170
. 0022-5096
20.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials: A Survey
,”
ASME J. Appl. Mech.
0021-8936,
50
(
3
), pp.
481
505
.
21.
van Mier
,
J. G. M.
, and
van Vliet
,
M. R. A.
, 2002, “
Uniaxial Tension Tests for the Determination of Fracture Parameters of Concrete: State of the Art
,”
Eng. Fract. Mech.
0013-7944,
69
(
2
), pp.
235
247
.
22.
Salençon
,
J.
, 2001,
Handbook of Continuum Mechanics
,
Springer-Verlag
,
Berlin
.
23.
Dormieux
,
L.
, and
Kondo
,
D.
, 2004, “
Approche micromécanique du couplage perméabilité–endommagement
,”
C. R. Mec.
1631-0721,
332
(
2
), pp.
135
140
.
24.
Dormieux
,
L.
, and
Kondo
,
D.
, 2005, “
Poroelasticity and Damage Theory for Saturated Cracked Media
,”
Applied Micromechanics of Porous Media
(
CISM Course and Lecture Notes
),
L.
Dormieux
and
F. -J.
Ulm
, eds.,
Springer
,
Wien
, Vol.
480
, pp.
153
186
.
25.
Sneddon
,
I. N.
, and
Lowengrub
,
M.
, 1970,
Crack Problems in the Classical Theory of Elasticity
,
Wiley
,
New York
.
26.
Gurtin
,
M. E.
, 1979, “
Thermodynamics and the Cohesive Zone in Fracture
,”
Z. Angew. Math. Phys.
0044-2275,
30
(
6
), pp.
991
1003
.
27.
Bartle
,
R. G.
, 1995,
The Elements of Integration and Lebesgue Measure
,
Wiley
,
New York
.
28.
Rice
,
J. R.
, 1968, “
A Path-Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
379
386
.
29.
Chen
,
W. R.
, and
Keer
,
L. M.
, 1993, “
Mixed-Mode Fatigue Crack Propagation of Penny-Shaped Cracks
,”
ASME J. Eng. Mater. Technol.
0094-4289,
115
(
4
), pp.
365
372
.
30.
Li
,
S.
, and
Wang
,
G.
, 2004, “
On Damage Theory of a Cohesive Medium
,”
Int. J. Eng. Sci.
,
42
(
8–9
), pp.
861
885
. 0020-7225
31.
Leblond
,
J. -B.
, 2003,
Mécanique de la rupture fragile et ductile
,
Hermes
,
Paris
, in French.
You do not currently have access to this content.