We propose a new hybrid piezoelectric composite comprised of armchair single-walled carbon nanotubes and piezoelectric fibers as reinforcements embedded in a conventional polymer matrix. Effective piezoelectric and elastic properties of this composite have been determined by a micromechanical analysis. Values of the effective piezoelectric coefficient of this composite that accounts for the in-plane actuation and of effective elastic properties are found to be significantly higher than those of the existing 1–3 piezoelectric composites without reinforced with carbon nanotubes.
Issue Section:
Technical Briefs
1.
Iijima
, S.
, 1991, “Helical Microtubes of Graphitic Carbon
,” Nature (London)
0028-0836, 354
, pp. 56
–58
.2.
Treacy
, M. M. J.
, Ebbessen
, T. W.
, and Gibson
, J. M.
, 1996, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,” Nature (London)
0028-0836, 381
, pp. 678
–680
.3.
Li
, C.
, and Chou
, T. W.
, 2003, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 2487
–2499
.4.
Sears
, A.
, and Batra
, R. C.
, 2004, “Macroscopic Properties of Carbon Nanotubes From Molecular Mechanics Simulations
,” Phys. Rev. B
0163-1829, 69
, p. 235406
.5.
Shen
, L.
, and Li
, J.
, 2004, “Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,” Phys. Rev. B
0163-1829, 69
, p. 045415
.6.
Batra
, R. C.
, and Sears
, A.
, 2007, “Uniform Radial Expansion/Contraction of Carbon Nanotubes and Their Transverse Elastic Moduli
,” Modell. Simul. Mater. Sci. Eng.
0965-0393, 15
, pp. 835
–844
.7.
Gupta
, S. S.
, and Batra
, R. C.
, 2008, “Continuum Structures Equivalent in Normal Mode Vibrations to Single-Walled Carbon Nanotubes
,” Comput. Mater. Sci.
0927-0256, 43
, pp. 715
–723
.8.
Batra
, R. C.
, and Gupta
, S. S.
, 2008, “Wall Thickness and Radial Breathing Modes of Single-walled Carbon Nanotubes
,” ASME J. Appl. Mech.
0021-8936, 75
, p. 061010
.9.
Wu
, J.
, Hwang
, K. C.
, and Huang
, Y.
, 2008, “An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,” J. Mech. Phys. Solids
0022-5096, 56
, pp. 279
–292
.10.
Thostenson
, E. T.
, and Chou
, T. W.
, 2003, “On the Elastic Properties of Carbon Nanotube Based Composites: Modeling and Characterization
,” J. Phys. D
0022-3727, 36
, pp. 573
–582
.11.
Odegard
, G. M.
, Gates
, T. S.
, Wise
, K. E.
, Park
, C.
, and Siochi
, E. J.
, 2003, “Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,” Compos. Sci. Technol.
0266-3538, 63
, pp. 1671
–1687
.12.
Song
, Y. S.
, and Youn
, J. R.
, 2006, “Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites
,” Polymer
0032-3861, 47
, pp. 1741
–1748
.13.
Piezocomposites, Materials System Inc., 543 Great Road, Littleton, MA 01560.
14.
Smith
, W. A.
, and Auld
, B. A.
, 1991, “Modeling 1-3 Composite Piezoelectrics: Thickness Mode Oscillations
,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010, 38
(1
), pp. 40
–47
.15.
Ray
, M. C.
, and Pradhan
, A. K.
, 2007, “On the Use of Vertically Reinforced 1-3 Piezoelectric Composites for Hybrid Damping of Laminated Composite Plates
,” Mechanics of Advanced Materials and Structures
, 14
, pp. 245
–261
.16.
Benveniste
, Y.
, and Dvorak
, G. J.
, 1992, “Uniform Fields and Universal Relations in Piezoelectric Composites
,” J. Mech. Phys. Solids
0022-5096, 40
, pp. 1295
–1412
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.