We propose a new hybrid piezoelectric composite comprised of armchair single-walled carbon nanotubes and piezoelectric fibers as reinforcements embedded in a conventional polymer matrix. Effective piezoelectric and elastic properties of this composite have been determined by a micromechanical analysis. Values of the effective piezoelectric coefficient e31 of this composite that accounts for the in-plane actuation and of effective elastic properties are found to be significantly higher than those of the existing 1–3 piezoelectric composites without reinforced with carbon nanotubes.

1.
Iijima
,
S.
, 1991, “
Helical Microtubes of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Treacy
,
M. M. J.
,
Ebbessen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
381
, pp.
678
680
.
3.
Li
,
C.
, and
Chou
,
T. W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2487
2499
.
4.
Sears
,
A.
, and
Batra
,
R. C.
, 2004, “
Macroscopic Properties of Carbon Nanotubes From Molecular Mechanics Simulations
,”
Phys. Rev. B
0163-1829,
69
, p.
235406
.
5.
Shen
,
L.
, and
Li
,
J.
, 2004, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
, p.
045415
.
6.
Batra
,
R. C.
, and
Sears
,
A.
, 2007, “
Uniform Radial Expansion/Contraction of Carbon Nanotubes and Their Transverse Elastic Moduli
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
, pp.
835
844
.
7.
Gupta
,
S. S.
, and
Batra
,
R. C.
, 2008, “
Continuum Structures Equivalent in Normal Mode Vibrations to Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
43
, pp.
715
723
.
8.
Batra
,
R. C.
, and
Gupta
,
S. S.
, 2008, “
Wall Thickness and Radial Breathing Modes of Single-walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061010
.
9.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
, 2008, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
279
292
.
10.
Thostenson
,
E. T.
, and
Chou
,
T. W.
, 2003, “
On the Elastic Properties of Carbon Nanotube Based Composites: Modeling and Characterization
,”
J. Phys. D
0022-3727,
36
, pp.
573
582
.
11.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2003, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1671
1687
.
12.
Song
,
Y. S.
, and
Youn
,
J. R.
, 2006, “
Modeling of Effective Elastic Properties for Polymer Based Carbon Nanotube Composites
,”
Polymer
0032-3861,
47
, pp.
1741
1748
.
13.
Piezocomposites, Materials System Inc., 543 Great Road, Littleton, MA 01560.
14.
Smith
,
W. A.
, and
Auld
,
B. A.
, 1991, “
Modeling 1-3 Composite Piezoelectrics: Thickness Mode Oscillations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
38
(
1
), pp.
40
47
.
15.
Ray
,
M. C.
, and
Pradhan
,
A. K.
, 2007, “
On the Use of Vertically Reinforced 1-3 Piezoelectric Composites for Hybrid Damping of Laminated Composite Plates
,”
Mechanics of Advanced Materials and Structures
,
14
, pp.
245
261
.
16.
Benveniste
,
Y.
, and
Dvorak
,
G. J.
, 1992, “
Uniform Fields and Universal Relations in Piezoelectric Composites
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1295
1412
.
You do not currently have access to this content.