An analysis is conducted of the two-dimensional flow of Bingham solids between two rotating plates. The maximum friction law is adopted at the plate surface. An asymptotic analysis of the solution is performed in the vicinity of the friction surface. Its results are used in a numerical procedure to obtain an accurate approximation of the solution near the friction surface. The through thickness distribution of velocities, the equivalent strain rate, and stresses is illustrated. Qualitative features of the solution are emphasized. The results are compared with the solution for rate-independent materials.

1.
Hill
,
R.
, 1950, “
The Mathematical Theory of Plasticity
,”
Clarendon
,
Oxford, UK
.
2.
Shield
,
R. T.
, 1955, “
Plastic Flow in a Converging Conical Channel
,”
J. Mech. Phys. Solids
0022-5096,
3
(
4
), pp.
246
258
.
3.
Spencer
,
A. J. M.
, 1965, “
A Theory of the Failure of Ductile Materials Reinforced by Elastic Fibres
,”
Int. J. Mech. Sci.
,
7
, pp.
197
209
. 0020-7403
4.
Alexandrov
,
S.
, and
Richmond
,
O.
, 2001, “
Singular Plastic Flow Fields Near Surfaces of Maximum Friction Stress
,”
Int. J. Non-Linear Mech.
0020-7462,
36
(
1
), pp.
1
11
.
5.
Pemberton
,
C. S.
, 1965, “
Flow of Imponderable Granular Materials in Wedge-Shaped Channels
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
351
360
.
6.
Marshall
,
E. A.
, 1967, “
The Compression of a Slab of Ideal Soil Between Rough Plates
,”
Acta Mech.
0001-5970,
3
, pp.
82
92
.
7.
Alexandrov
,
S.
, and
Lyamina
,
E.
, 2003, “
Plane-Strain Compression of Material Obeying the Double-Shearing Model Between Rotating Plates
,”
Int. J. Mech. Sci.
,
45
(
9
), pp.
1505
1517
. 0020-7403
8.
Alexandrov
,
S.
, and
Lyamina
,
E.
, 2003, “
Compression of a Mean-Stress Sensitive Plastic Material by Rotating Plates
,”
Mech. Solids
0025-6544,
38
(
6
), pp.
40
48
.
9.
Spencer
,
A. J. M.
, 2005, “
Compression and Shear of a Layer of Granular Material
,”
J. Eng. Math.
0022-0833,
52
, pp.
251
264
.
10.
Spencer
,
A. J. M.
, 1964, “
A Theory of Kinematics of Ideal Soils Under Plane Strain Conditions
,”
J. Mech. Phys. Solids
0022-5096,
12
, pp.
337
351
.
11.
Oldroyd
,
J. G.
, 1956, “
Non-Newtonian Flow of Liquids and Solids
,”
Rheology: Theory and Applications
, Vol.
1
,
F. R.
Eirich
, ed.,
Academic
,
New York
, pp.
653
682
.
12.
Adams
,
M. J.
,
Briscoe
,
B. J.
,
Corfield
,
G. M.
,
Lawrence
,
C. J.
, and
Papathanasiou
,
T. D.
, 1997, “
An Analysis of the Plane-Strain Compression of Viscous Materials
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
420
424
.
13.
Cristescu
,
N.
, 1975, “
Plastic Flow Through Conical Converging Dies, Using a Viscoplastic Constitutive Equation
,”
Int. J. Mech. Sci.
0020-7403,
17
, pp.
425
433
.
14.
Durban
,
D.
, 1984, “
Rate Effects in Steady Forming Processes of Plastic Materials
,”
Int. J. Mech. Sci.
,
26
(
4
), pp.
293
304
. 0020-7403
15.
Durban
,
D.
, 1986, “
On Generalized Radial Flow Patterns of Viscoplastic Solids With Some Applications
,”
Int. J. Mech. Sci.
,
28
(
2
), pp.
97
110
. 0020-7403
16.
Akulenko
,
L. D.
,
Georgievskii
,
D. V.
,
Klimov
,
D. M.
,
Kumakshev
,
S. A.
, and
Nesterov
,
S. V.
, 2006, “
Deformation of a Bingham Viscoplastic Fluid in a Plane Confuser
,”
Int. Appl. Mech.
,
42
(
4
), pp.
375
406
. 1063-7095
17.
Alexandrov
,
S.
, and
Alexandrova
,
N.
, 2000, “
On the Maximum Friction Law in Viscoplasticity
,”
Mech. Time-Depend. Mater.
1385-2000,
4
(
1
), pp.
99
104
.
18.
Rabinovich
,
D.
,
Givoli
,
D.
, and
Vigdergauz
,
S.
, 2007, “
Xfem-Based Crack Detection Scheme Using a General Algorithm
,”
Int. J. Numer. Methods Eng.
,
71
, pp.
1051
1080
. 0029-5981
19.
Oldroyd
,
J. G.
, 1943, “
Two-Dimensional Plastic Flow of a Bingham Solid: A Plastic Boundary-Layer Theory for Slow Motion
,”
Proc. Cambridge Philos. Soc.
,
43
, pp.
383
395
. 0008-1981
20.
Smyrnaios
,
D. N.
, and
Tsamopoulos
,
J. A.
, 2001, “
Squeeze Flow of Bingham Plastics
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
100
, pp.
165
190
.
21.
Matsoukas
,
A.
, and
Mitsoulis
,
E.
, 2003, “
Geometry Effects in Squeeze Flow of Bingham Plastics
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
109
, pp.
231
240
.
22.
deVries
,
G.
,
Craig
,
D. B.
, and
Haddow
,
J. B.
, 1971, “
Pseudo-Plastic Converging Flow
,”
Int. J. Mech. Sci.
,
13
, pp.
763
772
. 0020-7403
23.
Helsing
,
J.
, and
Jonsson
,
A.
, 2002, “
On the Accuracy of Benchmark Tables and Graphical Results in the Applied Mechanics Literature
,”
ASME J. Appl. Mech.
0021-8936,
69
(
1
), pp.
88
90
.
You do not currently have access to this content.