An analysis is conducted of the two-dimensional flow of Bingham solids between two rotating plates. The maximum friction law is adopted at the plate surface. An asymptotic analysis of the solution is performed in the vicinity of the friction surface. Its results are used in a numerical procedure to obtain an accurate approximation of the solution near the friction surface. The through thickness distribution of velocities, the equivalent strain rate, and stresses is illustrated. Qualitative features of the solution are emphasized. The results are compared with the solution for rate-independent materials.
Issue Section:
Research Papers
1.
Hill
, R.
, 1950, “The Mathematical Theory of Plasticity
,” Clarendon
, Oxford, UK
.2.
Shield
, R. T.
, 1955, “Plastic Flow in a Converging Conical Channel
,” J. Mech. Phys. Solids
0022-5096, 3
(4
), pp. 246
–258
.3.
Spencer
, A. J. M.
, 1965, “A Theory of the Failure of Ductile Materials Reinforced by Elastic Fibres
,” Int. J. Mech. Sci.
, 7
, pp. 197
–209
. 0020-74034.
Alexandrov
, S.
, and Richmond
, O.
, 2001, “Singular Plastic Flow Fields Near Surfaces of Maximum Friction Stress
,” Int. J. Non-Linear Mech.
0020-7462, 36
(1
), pp. 1
–11
.5.
Pemberton
, C. S.
, 1965, “Flow of Imponderable Granular Materials in Wedge-Shaped Channels
,” J. Mech. Phys. Solids
0022-5096, 13
, pp. 351
–360
.6.
Marshall
, E. A.
, 1967, “The Compression of a Slab of Ideal Soil Between Rough Plates
,” Acta Mech.
0001-5970, 3
, pp. 82
–92
.7.
Alexandrov
, S.
, and Lyamina
, E.
, 2003, “Plane-Strain Compression of Material Obeying the Double-Shearing Model Between Rotating Plates
,” Int. J. Mech. Sci.
, 45
(9
), pp. 1505
–1517
. 0020-74038.
Alexandrov
, S.
, and Lyamina
, E.
, 2003, “Compression of a Mean-Stress Sensitive Plastic Material by Rotating Plates
,” Mech. Solids
0025-6544, 38
(6
), pp. 40
–48
.9.
Spencer
, A. J. M.
, 2005, “Compression and Shear of a Layer of Granular Material
,” J. Eng. Math.
0022-0833, 52
, pp. 251
–264
.10.
Spencer
, A. J. M.
, 1964, “A Theory of Kinematics of Ideal Soils Under Plane Strain Conditions
,” J. Mech. Phys. Solids
0022-5096, 12
, pp. 337
–351
.11.
Oldroyd
, J. G.
, 1956, “Non-Newtonian Flow of Liquids and Solids
,” Rheology: Theory and Applications
, Vol. 1
, F. R.
Eirich
, ed., Academic
, New York
, pp. 653
–682
.12.
Adams
, M. J.
, Briscoe
, B. J.
, Corfield
, G. M.
, Lawrence
, C. J.
, and Papathanasiou
, T. D.
, 1997, “An Analysis of the Plane-Strain Compression of Viscous Materials
,” ASME J. Appl. Mech.
0021-8936, 64
, pp. 420
–424
.13.
Cristescu
, N.
, 1975, “Plastic Flow Through Conical Converging Dies, Using a Viscoplastic Constitutive Equation
,” Int. J. Mech. Sci.
0020-7403, 17
, pp. 425
–433
.14.
Durban
, D.
, 1984, “Rate Effects in Steady Forming Processes of Plastic Materials
,” Int. J. Mech. Sci.
, 26
(4
), pp. 293
–304
. 0020-740315.
Durban
, D.
, 1986, “On Generalized Radial Flow Patterns of Viscoplastic Solids With Some Applications
,” Int. J. Mech. Sci.
, 28
(2
), pp. 97
–110
. 0020-740316.
Akulenko
, L. D.
, Georgievskii
, D. V.
, Klimov
, D. M.
, Kumakshev
, S. A.
, and Nesterov
, S. V.
, 2006, “Deformation of a Bingham Viscoplastic Fluid in a Plane Confuser
,” Int. Appl. Mech.
, 42
(4
), pp. 375
–406
. 1063-709517.
Alexandrov
, S.
, and Alexandrova
, N.
, 2000, “On the Maximum Friction Law in Viscoplasticity
,” Mech. Time-Depend. Mater.
1385-2000, 4
(1
), pp. 99
–104
.18.
Rabinovich
, D.
, Givoli
, D.
, and Vigdergauz
, S.
, 2007, “Xfem-Based Crack Detection Scheme Using a General Algorithm
,” Int. J. Numer. Methods Eng.
, 71
, pp. 1051
–1080
. 0029-598119.
Oldroyd
, J. G.
, 1943, “Two-Dimensional Plastic Flow of a Bingham Solid: A Plastic Boundary-Layer Theory for Slow Motion
,” Proc. Cambridge Philos. Soc.
, 43
, pp. 383
–395
. 0008-198120.
Smyrnaios
, D. N.
, and Tsamopoulos
, J. A.
, 2001, “Squeeze Flow of Bingham Plastics
,” J. Non-Newtonian Fluid Mech.
0377-0257, 100
, pp. 165
–190
.21.
Matsoukas
, A.
, and Mitsoulis
, E.
, 2003, “Geometry Effects in Squeeze Flow of Bingham Plastics
,” J. Non-Newtonian Fluid Mech.
0377-0257, 109
, pp. 231
–240
.22.
deVries
, G.
, Craig
, D. B.
, and Haddow
, J. B.
, 1971, “Pseudo-Plastic Converging Flow
,” Int. J. Mech. Sci.
, 13
, pp. 763
–772
. 0020-740323.
Helsing
, J.
, and Jonsson
, A.
, 2002, “On the Accuracy of Benchmark Tables and Graphical Results in the Applied Mechanics Literature
,” ASME J. Appl. Mech.
0021-8936, 69
(1
), pp. 88
–90
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.