Guided waves are utilized in structural health monitoring for identifying damage in material components. Simulations can be used to examine how elastic waves propagate in components to help in selecting measurement and data analysis techniques. In this work, the influence of grid size and the frequency sample rate on the amplitude accuracy and convergence of local interaction simulation approach/sharp interface model (LISA/SIM) numerical simulations are studied as they pertain to guided wave propagation in structural materials. These issues are studied in all three dimensions, and amplitude distortion with respect to the Courant–Friedrich–Lewy criterion is explored. The LISA/SIM enables accurate and fast modeling of localized and sharp changes in material properties across interfaces associated with heterogeneities and/ or boundaries. The validity of the simulation is demonstrated by comparing simulated responses with experimentally measured data. Additionally, Lamb wave dispersion curves are extracted through the course of the convergence study using a broadband pulse and the two-dimensional fast Fourier transform method.

1.
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1992, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
39
(
3
), pp.
381
397
.
2.
Bar-Cohen
,
Y.
,
Mal
,
A.
, and
Chang
,
Z.
, 1998, “
Composite Material Defects Characterization Using Leaky Lamb Wave Dispersion Data
,”
Proceedings of SPIE, NDE Techniques for Aging Infrastructure and Manufacturing, Conference NDE of Materials and Composites II
,
San Antonio, TX
, Mar. 31–Apr. 2, Vol.
3396
, Paper No. 3396-25.
3.
Tuzzeo
,
D.
, and
di Scalea
,
F. L.
, 2001, “
Noncontact Air-Coupled Guided Wave Ultrasonics for Detection of Thinning Defects in Aluminum Plates
,”
Res. Nondestruct. Eval.
0934-9847,
13
(
2
), pp.
61
77
.
4.
Bartoli
,
I.
,
di Scalea
,
F. L.
,
Fateh
,
M.
, and
Viola
,
E.
, 2005, “
Modeling Guided Wave Propagation with Application to the Long-Range Defect Detection in Railroad Tracks
,”
NDT & E Int.
0963-8695,
38
, pp.
325
334
.
5.
Rajagopalan
,
J.
,
Balasubramanian
,
K.
, and
Krishnamurthy
,
C. V.
, 2006, “
A Phase Reconstruction Algorithm for Lamb Wave Based Structural Health Monitoring of Anisotropic Multilayered Composite Plates
,”
J. Acoust. Soc. Am.
0001-4966,
119
(
2
), pp.
872
878
.
6.
Sundararaman
,
S.
, and
Adams
,
D. E.
, 2007, “
Simulation of Lamb Wave Propagation in a C458 Al-Li Friction Stir Welded Plate
,”
Proceedings of the SAMPE Conference
,
Baltimore, MD
, pp.
1
15
.
7.
Delsanto
,
P. P.
,
Whitcombe
,
T.
,
Chaskelis
,
H. H.
, and
Mignogna
,
R. B.
, 1992, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials I: The One-Dimensional Case
,”
Wave Motion
0165-2125,
16
, pp.
65
80
.
8.
Delsanto
,
P. P.
,
Schechter
,
R. S.
,
Chaskelis
,
H. H.
,
Mignogna
,
R. B.
, and
Kline
,
R. B.
, 1994, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials II: The Two-Dimensional Case
,”
Wave Motion
0165-2125,
20
, pp.
295
314
.
9.
Delsanto
,
P. P.
,
Schechter
,
R. S.
, and
Mignogna
,
R. B.
, 1997, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials III: The Three-Dimensional Case
,”
Wave Motion
0165-2125,
26
, pp.
329
339
.
10.
Agostini
,
V.
,
Delsanto
,
P. P.
,
Genesio
,
I.
, and
Oliviero
,
D.
, 2003, “
Simulation of Lamb Wave Propagation for the Characterization of Complex Structures
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
50
(
4
), pp.
441
448
.
11.
Ruffino
,
E.
, and
Delsanto
,
P. P.
, 1999, “
Problems of Accuracy and Reliability in 2-D Lisa Simulations
,”
Comput. Math. Appl.
0898-1221,
38
, pp.
89
97
.
12.
Iordache
,
D.
,
Delsanto
,
P. P.
, and
Scalerandi
,
M.
, 1997, “
Pulse Distortions in the FD Simulations of Elastic Wave Propagation
,”
Math. Comput. Modell.
0895-7177,
25
(
6
), pp.
31
43
.
13.
Delsanto
,
P. P.
,
Iordache
,
D.
,
Iordache
,
C.
, and
Ruffino
,
E.
, 1997, “
Analysis of Stability and Convergence in FD Simulations of the 1-D Ultrasonic Wave Propagation
,”
Math. Comput. Modell.
0895-7177,
25
(
6
), pp.
19
29
.
14.
Cangellaris
,
A. C.
, 1993, “
Numerical Stability and Numerical Dispersion of a Compact 2-D/FDTD Method Used for the Dispersion Analysis of Waveguides
,”
IEEE Microw. Guid. Wave Lett.
1051-8207,
3
(
1
), pp.
3
5
.
15.
Strikwerda
,
J. C.
, 2004,
Finite Difference Schemes and Partial Difference Equations
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
16.
Alleyne
,
D. N.
, and
Cawley
,
P.
, 1991, “
A Two-Dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals
,”
J. Acoust. Soc. Am.
0001-4966,
89
, pp.
1159
1168
.
17.
Graff
,
K. F.
, 1991,
Wave Motion in Elastic Solids
,
Dover
,
New York
.
18.
Virieux
,
J.
, 1986, “
P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite Difference Method
,”
Geophysics
0016-8033,
51
(
4
), pp.
889
901
.
19.
Harker
,
A. H.
, 1988,
Elastic Waves in Solids With Applications to Non-Destructive Testing of Pipe Lines
,
Hilger
,
Bristol
.
20.
Balasubramanyam
,
R.
,
Quinney
,
D.
,
Challis
,
R. E.
, and
Todd
,
C. P. D.
, 1996, “
A Finite-Difference Simulation of Ultrasonic Lamb Waves in Metal Sheets with Experimental Verification
,”
J. Phys. D
0022-3727,
29
(
1
), pp.
147
155
.
21.
Alleyne
,
D. N.
, 1991, “
The Nondestructive Testing of Plates Using Ultrasonic Lamb Waves
,” Ph.D. thesis, Imperial College of Science, Technology and Medicine, London.
22.
Smith
,
G. D.
, 1985,
Numerical Solution of Partial Differential Equations: Finite Difference Methods
,
3rd ed.
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.