The mechanics of frictional attachment between surfaces with pillars, inspired by the head fixation system of dragonflies, is analyzed. The system consists of two surfaces of interdigitating pillars held together through friction, as by the densely packed bristles of two brushes when pressed together. The adhesive strength of the system is promoted by high elastic modulus, high friction coefficient, large aspect ratio, and dense packing of the fibers. However, the design is limited by the compressive buckling, the compressive indentation or cracking of the contacting pillars, yielding in shear or similar mechanisms that limit the achievable friction stress, and tensile failure of the pillars upon pull-out. Maps, which summarize the strength of the adhesive system and the failure limits and illustrate the trade-off among the design parameters, are presented. Case studies for steel, nylon, and ceramic pillars show that useful strength can be achieved in such attachments; when buckling during assembly and contact failure can be avoided, adhesive performance as high as 30% of the tensile strength of the pillar material may be possible.

1.
Gorb
,
S. N.
,
Beutel
,
R. G.
,
Gorb
,
E. V.
,
Jiao
,
Y.
,
Kastner
,
V.
,
Niederegger
,
S.
,
Popov
,
V. L.
,
Scherge
,
M.
,
Schwartz
,
U.
, and
Voetsch
,
W.
, 2002, “
Structural Design and Biomechanics of Friction-Based Releasable Attachment Devices in Insects
,”
Integr. Comp. Biol.
,
42
, pp.
1127
1139
. 1540-7063
2.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
3.
Timoshenko
,
S. P.
, and
Gere
,
J. N.
, 1961,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
4.
McClintock
,
F. A.
, and
Argon
,
A. S.
, 1966,
Mechanical Behavior of Materials
,
Addison-Wesley
,
Reading, MA
.
5.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
324
, pp.
301
313
.
6.
Carpick
,
R. W.
,
Agrait
,
N.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
, 1996, “
Variation of the Interfacial Shear Strength and Adhesion of a Nanometer-Sized Contact
,”
Langmuir
0743-7463,
12
, pp.
3334
3340
.
7.
Kim
,
K. S.
,
McMeeking
,
R. M.
, and
Johnson
,
K. L.
, 1998, “
Adhesion, Slip, Cohesive Zones and Energy Fluxes for Elastic Spheres in Contact
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
243
266
.
8.
Gorb
,
S. N.
, and
Popov
,
V. L.
, 2002, “
Probabilistic Fasteners With Parabolic Elements: Biological Systems, Artificial Model and Theoretical Considerations
,”
Philos. Trans. R. Soc. London, Ser. A
,
360
, pp.
211
225
. 0080-4614
9.
Chaudhury
,
M. K.
,
Weaver
,
T.
,
Hui
,
C. Y.
, and
Kramer
,
E. J.
, 1996, “
Adhesive Contact of a Cylindrical Lens and a Flat Sheet
,”
J. Appl. Phys.
0021-8979,
80
, pp.
30
37
.
11.
Rao
,
M. P.
,
Sanchez-Herencia
,
A. J.
,
Beltz
,
G. E.
,
McMeeking
,
R. M.
, and
Lange
,
F. F.
, 1999, “
Laminar Ceramics That Exhibit a Threshold Strength
,”
Science
0036-8075,
286
, pp.
102
105
.
13.
Gorb
,
S. N.
, 2001,
Attachment Devices of Insect Cuticle
,
Kluwer
,
Dordrecht
.
14.
Feughelman
,
M.
, 1997,
Mechanical Properties and Structure of Alpha-Keratin Fibres: Wool, Human Hair and Related Fibres
,
UNSW
,
Sydney
.
You do not currently have access to this content.