In this paper, a methodology is presented for the identification of the complete mass, damping, and stiffness matrices of a dynamical system using a limited number of time histories of the input excitation and of the response output. Usually, in this type of inverse problems, the common assumption is that the excitation and the response are recorded at a sufficiently large number of locations so that the full-order mass, damping, and stiffness matrices can be estimated. However, in most applications, an incomplete set of recorded time histories is available and this impairs the possibility of a complete identification of a second-order model. In this proposed approach, all the complex eigenvectors are correctly identified at the instrumented locations (either at a sensor or at an actuator location). The remaining eigenvector components are instead obtained through a nonlinear least-squares optimization process that minimizes the output error between the measured and predicted responses at the instrumented locations. The effectiveness of this approach is shown through numerical examples and issues related to its robustness to noise polluted measurements and to uniqueness of the solution are addressed.

1.
Agbabian
,
M. S.
,
Masri
,
S. F.
,
Miller
,
R. K.
, and
Caughey
,
T. K.
, 1991, “
System Identification Approach to Detection of Structural Changes
,”
J. Eng. Mech.
0733-9399,
117
(
2
), pp.
370
390
.
2.
Safak
,
E.
, 1989, “
Adaptive Modelling, Identification, and Control of Dynamic Structural Systems. I: Theory
,”
J. Eng. Mech.
0733-9399
115
(
11
), pp.
2386
2405
.
3.
Safak
,
E.
, 1989, “
Adaptive Modelling, Identification, and Control of Dynamic Structural Systems. II: Applications
,”
J. Eng. Mech.
0733-9399
115
(
11
), pp.
2406
2426
.
4.
Udwadia
,
F. E.
, 1994, “
Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems
,”
J. Eng. Mech.
0733-9399,
120
(
2
), pp.
368
390
.
5.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
, 1998, “
Updating Models and Their Uncertainties. I: Bayesian Statistical Framework
,”
J. Eng. Mech.
0733-9399,
124
(
4
), pp.
455
461
.
6.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
, 1998, “
Updating Models and Their Uncertainties. II: Modal Identifiability
,”
J. Eng. Mech.
0733-9399,
124
(
4
), pp.
463
467
.
7.
Luş
,
H.
,
Betti
,
R.
, and
Longman
,
R. W.
, 1999, “
Identification of Linear Structural Systems Using Earthquake-Induced Vibration Data
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
28
, pp.
1449
1467
.
8.
Alvin
,
K. F.
, and
Park
,
K. C.
, 1994, “
Second-Order Structural Identification Procedure Via State-Space: Based System Identification
,”
AIAA J.
,
32
(
2
), pp.
397
406
. 0001-1452
9.
Alvin
,
K. F.
,
Peterson
,
L. D.
, and
Park
,
K. C.
, 1995, “
Method for Determining Minimum-Order Mass and Stiffness Matrices From Modal Test Data
,”
AIAA J.
,
33
(
1
), pp.
128
135
. 0001-1452
10.
Farhat
,
C.
, and
Hemez
,
F. M.
, 1993, “
Updating Finite Element Dynamic Models Using an Element-by-Element Sensitivity Methodology
,”
AIAA J.
,
31
(
9
), pp.
1702
1711
. 0001-1452
11.
Doebling
,
S. W.
,
Hemez
,
F. M.
,
Barlow
,
M. S.
,
Petersonorse
,
L. D.
, and
Farhat
,
C.
, 1993, “
Damage Detection in a Suspended Scale Model Truss Via Modal Update
,”
Proceedings of the 11th International Modal Analysis Conference
,
Society for Experimental Mechanics
, pp.
1083
1094
.
12.
DeAngelis
,
M.
,
Luş
,
H.
,
Betti
,
R.
, and
Longman
,
R. W.
, 2002, “
Extracting Physical Parameters of Mechanical Models From Identified State Space Representations
,”
ASME J. Appl. Mech.
0021-8936,
69
(
5
), pp.
617
625
.
13.
Luş
,
H.
,
De Angelis
,
M.
, and
Betti
,
R.
, 2003, “
A New Approach for Reduced Order Modeling of Mechanical Systems Using Vibration Measurements
,”
ASME J. Appl. Mech.
0021-8936,
70
(
5
), pp.
715
723
.
14.
Udwadia
,
F. E.
, and
Sharma
,
D. K.
, 1978, “
Some Uniqueness Results Related to Building Structural Identification
,”
SIAM J. Appl. Math.
0036-1399,
34
(
1
), pp.
104
108
.
15.
Udwadia
,
F. E.
,
Sharma
,
D. K.
, and
Shah
,
P. C.
, 1978, “
Uniqueness of Damping and Stiffness Distributions in the Identification of Soil and Structural Systems
,”
SIAM J. Appl. Math.
,
45
(
1
), pp.
181
187
. 0036-1399
16.
Franco
,
G.
,
Betti
,
R.
, and
Longman
,
R. W.
, 2006, “
On the Uniqueness of Solutions for the Identification of Linear Structural Systems
,”
ASME J. Appl. Mech.
0021-8936,
73
(
1
), pp.
153
162
.
17.
Yu.
,
J.
, 2004, “
Identification of Structural Systems With Limited Set of Instrumentation
,” Ph.D. thesis, Columbia University, New York.
18.
Sestieri
,
A.
, and
Ibrahim
,
S. R.
, 1994, “
Analysis of Errors and Approximations in the Use of Modal Co-Ordinates
,”
J. Sound Vib.
0022-460X,
177
(
2
), pp.
145
157
.
19.
Luş
,
H.
,
Betti
,
R.
, and
Longman
R. W.
2002, “
Obtaining Refined First-Order Predictive Models of Linear Structural Systems
,”
Earthquake Eng. Struct. Dyn.
0098-8847
31
, pp.
1413
1440
.
You do not currently have access to this content.