A stabilization technique targeting the Reynolds-averaged Navier–Stokes (RANS) equations is proposed to account for the multiscale nature of turbulence and high solution gradients. The objective is effective stabilization in computations with the advection-diffusion reaction equations, which are typical of the class of turbulence scale-determining equations where reaction-dominated effects strongly influence the boundary layer prediction in the presence of nonequilibrium phenomena. The stabilization technique, which is based on a variational multiscale method, includes a discontinuity-capturing term designed to be operative when the solution gradients are high and the reactionlike terms are dominant. As test problems, we use a 2D model problem and 3D flow computation for a linear compressor cascade.

1.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
, 2004, “
A New Stabilized Finite Element Method for Advection-Diffusion-Reaction Equations Using Quadratic Elements
,”
Modelling Fluid Flow
,
T.
Lajos
,
et al.
, eds.,
Springer
,
New York
.
2.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
, 2005, “
A Variational Multiscale High-Order Finite Element Formulation for Turbomachinery Flow Computations
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4797
4823
. 0045-7825
3.
Corsini
,
A.
,
Rispoli
,
F.
,
Santoriello
,
A.
, and
Tezduyar
,
T. E.
, 2006, “
Improved Discontinuity-Capturing Finite Element Techniques for Reaction Effects in Turbulence Computation
,”
Comput. Mech.
0178-7675,
38
, pp.
356
364
.
4.
Dubois
,
T.
,
Jauberteau
,
F.
, and
Temam
,
R.
, 1993, “
Solution of the Incompressible Navier–Stokes Equations by the Nonlinear Galerkin Method
,”
J. Sci. Comput.
0885-7474,
8
, pp.
167
194
.
5.
Hughes
,
T. J. R.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
, 2000, “
Large Eddy Simulation and the Variational Multiscale Method
,”
Comput. Visualization Sci.
1432-9360,
3
, pp.
47
59
.
6.
Rispoli
,
F.
,
Corsini
,
A.
, and
Tezduyar
,
T. E.
, 2007, “
Finite Element Computation of Turbulent Flows With the Discontinuity-Capturing Directional Dissipation (DCDD)
,”
Comput. Fluids
,
36
, pp.
121
126
. 0045-7930
7.
Tezduyar
,
T. E.
, and
Park
,
Y. J.
, 1986, “
Discontinuity Capturing Finite Element Formulations for Nonlinear Convection-Diffusion-Reaction Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
59
, pp.
307
325
.
8.
Tezduyar
,
T. E.
,
Park
,
Y. J.
, and
Deans
,
H. A.
, 1987, “
Finite Element Procedures for Time-Dependent Convection-Diffusion-Reaction Systems
,”
Int. J. Numer. Methods Fluids
,
7
, pp.
1013
1033
. 0271-2091
9.
Codina
,
R.
, 1998, “
Comparison of Some Finite Element Methods for Solving the Diffusion-Convection-Reaction Equation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
156
, pp.
185
210
.
10.
Franca
,
L. P.
, and
Valentin
,
F.
, 2000, “
On an Improved Unusual Stabilized Finite Element Method for the Advective-Reactive-Diffusive Equation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1785
1800
.
11.
Hughes
,
T. J. R.
, 1995, “
Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
387
401
.
12.
Hauke
,
G.
, 2002, “
A Simple Subgrid Scale Stabilized Method for the Advection-Diffusion-Reaction Equation
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
2925
2947
. 0045-7825
13.
Gravemeier
,
V.
, and
Wall
,
W. A.
, 2007, “
A ‘Divide-and-Conquer’ Spatial and Temporal Multiscale Method for Transient Convection-Diffusion-Reaction Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
779
804
.
14.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
, 1996, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
108
155
.
15.
Corsini
,
A.
, and
Rispoli
,
F.
, 2005, “
Flow Analyses in a High-Pressure Axial Ventilation Fan With a Non-Linear Eddy Viscosity Closure
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
108
155
.
16.
Tezduyar
,
T. E.
, 2003, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numer. Methods Fluids
0271-2091,
43
, pp.
555
575
.
17.
Tezduyar
,
T. E.
, 2007, “
Finite Elements in Fluids: Stabilized Formulations and Moving Boundaries and Interfaces
,”
Comput. Fluids
,
36
, pp.
191
206
. 0045-7930
18.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
, 2001, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
411
430
.
19.
Kang
,
S.
, and
Hirsch
,
C.
, 1993, “
Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance: Part I—Velocity and Pressure Fields
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
435
443
.
20.
Kang
,
S.
, and
Hirsch
,
C.
, 1993, “
Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance: Part II—The Tip Leakage Vortex
,”
ASME J. Turbomach.
,
115
, pp.
44
452
. 0045-7930
You do not currently have access to this content.