An examination of the effect of Poisson’s ratio on stress distribution is important to interpret the results of a stress-strain analysis by using experimental methods because the material of the model frequently has a different Poisson’s ratio from that of the prototype. In linear elasticity, the effect of Poisson’s ratio on three-dimensional stress distribution is theoretically explained for simply connected bodies by using static methods in this study. It is proven that the stress components are independent from Poisson’s ratio in sections of the body where the stress components arising are in equilibrium only with surface tractions. This result is useful in interpreting three-dimensional photoelasticity and other experiments and even in guiding the design.

1.
Michell
,
J. H.
, 1899, “
On the Direct Determination of Stress in an Elastic Solid, With Application to the Theory of Plates
,”
Proc. London Math. Soc.
0024-6115,
31
, pp.
100
124
.
2.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
3.
Westergaard
,
H. M.
, 1940, “
Effects of a Change of Poisson’s Ratio Analyzed by Twinned Gradients
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
113
116
.
4.
Fung
,
Y. C.
, 1968,
Foundations of Solid Mechanics
,
Prentice-Hall
,
New Delhi
.
5.
Beaujoint
,
N.
,
Nizeri
,
A.
, and
Remenieras
,
G.
, 1953, “
Etude Sur Modele Re’duit des Contraintes Dans les Barrages
,”
Ann. Ponts Chaussees
0003-4304,
123
(
4
).
6.
Knops
,
R. J.
, 1959, “
Method for Solving Linear Thermoelastic Problems
,”
J. Mech. Phys. Solids
0022-5096,
7
, pp.
182
192
.
7.
Proshko
,
V. M.
, 1958,
Voprosi Issledovaniya Napryajeniy na Obyomnix Modelyax, Polyarizasionno-Opticheskiy Metod Issledovaniya Napryajeniy
,
USSR Sci. Acad.
,
Moscow
.
8.
Love
,
A. E. H.
, 1929, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
228
, pp.
377
420
.
9.
Cerruti
,
V.
, 1882, “
Ricerche Intorno all’Equilibrio dei CorpiElastici Isotropi
,”
Atti R. Accad. Naz. Lincei, Mem. Cl. Sci. Fis., Mat. Nat.
0370-5935,
13
, pp.
81
123
.
10.
Boussinesq
,
J.
, 1885,
Applications des Potentiels a l’Étude de l’Équilibre et du Mouvements de Solides Élastiques
,
Gauthier-Villard
,
Paris
.
11.
Fabrikant
,
V. I.
,
Rubin
,
B. S.
, and
Karapetian
,
E. N.
, 1993, “
Half-Plane Crack Under Normal Load: Complete Solution
,”
J. Eng. Mech.
0733-9399,
119
, pp.
2238
2251
.
12.
Sneddon
,
I. N.
, and
Fabrikant
,
V. I.
, 1946, “
Boussinesq’s Problem for a Flat-Ended Cylinder
,”
Proc. Cambridge Philos. Soc.
0068-6735,
42
, pp.
29
39
.
13.
Fabrikant
,
V. I.
, 1988, “
Elastic Field Around a Circular Punch
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
604
610
.
14.
Abramov
,
V. M.
, 1939, “
Étude d’un cas d’Action non Symetrique d’un Poincon Circulaire Appliqué à un Corps Élastique d’Epaisseur Infinie et Limité Par un Plan
,”
C. R. Acad. Sci. URSS
0002-3264,
23
, pp.
759
764
.
15.
Hanson
,
M. T.
, 1992, “
The Elastic Field for Conical Identation Including Sliding Friction for Tranverse Isotropy
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
S123
S130
.
You do not currently have access to this content.