Graphite at the nanoscale is modeled as a material system consisting of a stack of parallel plates buffered by an elastic material. While the plates represent individual graphene sheets, the buffer material models the Van der Waals interaction between the graphene sheets. As such, the loading on graphite at the nanoscale is characterized by the membrane force, the bending moment, and the shear force in the graphene sheets. Cylindrical nanoindentation of graphite is analyzed by applying a special boundary element method that employs Green’s function for multilayers with platelike interfaces. Because Green’s function satisfies the traction-free surface, the interfacial displacement continuity and the interfacial traction discontinuity conditions, only the indentation surface area where the boundary condition is altered, are numerically discretized. Numerical results of cylindrical nanoindentation are presented. It is shown that the bending moment and the shear force in the graphene sheets are concentrated around the edge of contact, consistent with the singularities existing in the second and the third derivatives of the surface displacement in the reduced case of a semi-infinite homogeneous solid under cylindrical contact. Kinks of single, double, and triple joints are related to the bending moment, the shear force, and the concentrated force, respectively.

1.
Kelly
,
B. T.
, 1981,
Physics of Graphite
,
Applied Science
,
London
.
2.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
, 2004, “
Electrical Field Effect in Atomically Thin Carbon Films
,”
Science
0036-8075,
306
, pp.
666
669
.
3.
Geim
,
A. K.
, and
Novoselov
,
K. S.
, 2007, “
The Rise of Graphene
,”
Nat. Mater.
,
6
, pp.
183
191
. 1476-1122
4.
Katsnelson
,
M. I.
, 2007, “
Graphene: Carbon in Two Dimensions
,”
Mater. Today
1369-7021,
10
, pp.
20
27
.
5.
Barsoum
,
M. W.
,
Murugaiah
,
A.
,
Kalidindi
,
S. R.
,
Zhen
,
T.
, and
Gogotsi
,
Y.
, 2004, “
Kink Band, Nonlinear Elasticity and Nanoindentations in Graphite
,”
Carbon
0008-6223,
42
, pp.
1435
1445
.
6.
Barsoum
,
M. W.
,
Zhen
,
T.
,
Zhou
,
A.
,
Basu
,
S.
, and
Kalidindi
,
S. R.
, 2005, “
Microscale Modeling of Kinking Nonlinear Elastic Solids
,”
Phys. Rev. B
0163-1829,
71
, p.
134101
.
7.
Frank
,
F. C.
, and
Stroh
,
A. N.
, 1952, “
On the Theory of Kinking
,”
Proc. Phys. Soc. London
0370-1328,
65
, pp.
811
821
.
8.
Yang
,
B.
, and
Tewary
,
V. K.
, 2008, “
Green’s Function for Multilayers With Interfacial Membrane and Flexural Rigidities
,”
Comput., Mater., Continua
1546-2218,
8
, pp.
23
31
.
9.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
10.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity
,
Oxford University Press
,
Oxford
.
11.
Yang
,
B.
, and
Tewary
,
V. K.
, 2008, “
Multiscale Green’s Function of Deflection in Graphene Lattice
,”
Phys. Rev. B
0163-1829,
77
, p.
245442
.
12.
Maradudin
,
A. A.
,
Montroll
,
E. W.
,
Weiss
,
G. H.
, and
Ipatova
,
I. P.
, 1971,
Theory of Lattice Dynamics in the Harmonic Approximation
(
Solid State Physics Suppl.
3),
2nd ed.
,
H.
Ehrenreich
,
F.
Seitz
, and
D.
Turnbull
, eds.,
Academic
,
New York
.
13.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
0163-1829,
42
, pp.
9458
9471
.
14.
Zhou
,
J.
, and
Huang
,
R.
, 2008, “
Internal Lattice Relaxation of Single-Layer Graphene Under in-Plane Deformation
,”
J. Mech. Phys. Solids
,
56
, pp.
1609
1623
. 0022-5096
15.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
, 1984,
Boundary Elements Techniques: Theory and Applications in Engineering
,
Springer-Verlag
,
New York
.
16.
Yang
,
B.
, and
Ravi-Chandar
,
K.
, 1998, “
A Single-Domain Dual-Boundary-Element Formulation Incorporating a Cohesive Zone Model for Elastostatic Cracks
,”
Int. J. Fract.
0376-9429,
93
, pp.
115
144
.
17.
Yang
,
B.
,
Pan
,
E.
, and
Yuan
,
F. G.
, 2003, “
Three-Dimensional Stress Analysis of Composite Laminates With an Elastically Fastened Hole
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2017
2035
.
18.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, England
.
19.
Wadee
,
M. A.
,
Hunt
,
G. W.
, and
Peletier
,
M. A.
, 2004, “
Kink Band Instability in Layered Structures
,”
J. Mech. Phys. Solids
,
52
, pp.
1071
1091
. 0022-5096
20.
Barsoum
,
M. W.
, 2004, “
Mechanical Properties of the MAX Phases
,”
Encyclopedia of Materials: Science and Technology
,
K. H. J.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
E. J.
Kramer
,
S.
Mahajan
, and
P.
Veyssiere
, eds.,
Elsevier Science
,
New York
, pp.
1
16
.
21.
Yang
,
B.
, and
Tewary
,
V. K.
, 2006, “
Efficient Green’s Function Method of Line and Surface Defects in Multilayered Elastic and Piezoelectric Materials
,”
Comput. Model. Eng. Sci.
1526-1492,
15
, pp.
165
178
.
You do not currently have access to this content.