A nonlinear rubber material model is presented, where influences of frequency and dynamic amplitude are taken into account through fractional order viscoelasticity and plasticity, respectively. The problem of simultaneously modeling elastic, viscoelastic, and friction contributions is removed by additively splitting them. Due to the fractional order representation mainly, the number of parameters of the model remains low, rendering an easy fitting of the values from tests on material samples. The proposed model is implemented in a general-purpose finite element (FE) code. Since commercial FE codes do not contain any suitable constitutive model that represents the full dynamic behavior of rubber compounds (including frequency and amplitude dependent effects), a simple approach is used based on the idea of adding stress contributions from simple constitutive models: a mesh overlay technique, whose basic idea is to create a different FE model for each material definition (fractional derivative viscoelastic and elastoplastic), all with identical meshes but with different material definition, and sharing the same nodes. Fractional-derivative viscoelasticity is implemented through user routines and the algorithm for that purpose is described, while available von Mises’ elastoplastic models are adopted to take rate-independent effects into account. Satisfactory results are obtained when comparing the model results with tests carried out in two rubber bushings at a frequency range up to 500 Hz, showing the ability of the material model to accurately describe the complex dynamic behavior of carbon-black filled rubber compounds.

1.
Fletcher
,
W. P.
, and
Gent
,
A. N.
, 1953, “
Non-Linearity in the Dynamic Properties of Vulcanised Rubber Compounds
,”
Trans. Inst. Rubber Ind.
,
29
, pp.
266
280
.
2.
Jurado
,
F. J.
,
Mateo
,
A.
,
Gil-Negrete
,
N.
,
Viñolas
,
J.
, and
Kari
,
L.
, 1999, “
Testing and FE Modelling of the Dynamic Properties of Carbon Black Filled Rubbers
,”
Proceedings of the EAEC
, Barcelona, pp.
119
126
.
3.
Medalia
,
A. I.
, 1978, “
Effects of Carbon Black on Dynamic Properties of Rubber
,”
Rubber Chem. Technol.
0035-9475,
51
, pp.
437
523
.
4.
Sjöberg
,
M.
, 2000, “
Dynamic Behaviour of a Rubber Component in the Low Frequency Range: Measurements and Modelling
,”
Proceedings of the Seventh International Conference of Sound and Vibration
, Garmisch-Partenkirchen, pp.
2955
2962
.
5.
Dean
,
G. D.
,
Duncan
,
J. C.
, and
Johnson
,
A. F.
, 1984, “
Determination of Nonlinear Dynamic Properties of Carbon-Black Filled Rubbers
,”
Polym. Test.
0142-9418,
4
, pp.
225
249
.
6.
Wang
,
M. J.
, 1998, “
Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates
,”
Rubber Chem. Technol.
0035-9475,
71
, pp.
520
589
.
7.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
0021-8979,
11
, pp.
582
592
.
8.
Valanis
,
K. C.
, and
Landel
,
R. F.
, 1967, “
The Strain-Energy Function of a Hyperelastic Material in Terms of Extension Ratios
,”
J. Appl. Phys.
0021-8979,
38
, pp.
2997
3002
.
9.
Treloar
,
L. R. G.
, 1975,
The Physics of Rubber
,
Clarendon
,
Oxford
.
10.
Rivlin
,
R. S.
, 1992, “
The Elasticity of Rubber
,”
Rubber Chem. Technol.
0035-9475,
65
, pp.
G51
G66
.
11.
Yeoh
,
O. H.
, 1990, “
Characterization of Elastic Properties of Carbon-Black Filled Rubber Vulcanizates
,”
Rubber Chem. Technol.
0035-9475,
69
, pp.
792
805
.
12.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for Large Stretch Behaviour of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
13.
Yeoh
,
O. H.
, 1997, “
On the Ogden Strain-Energy Function
,”
Rubber Chem. Technol.
0035-9475,
70
, pp.
175
182
.
14.
Lambert-Diani
,
J.
, and
Rey
,
C.
, 1999, “
New Phenomenological Behaviour Laws for Rubbers and Thermoplastic Elastomers
,”
Eur. J. Mech. A/Solids
0997-7538,
18
, pp.
1027
1043
.
15.
James
,
A. G.
,
Green
,
A.
, and
Simpson
,
G. M.
, 1975, “
Strain Energy Functions of Rubber: I. Characterization of Gum Vulcanizates
,”
J. Appl. Polym. Sci.
0021-8995,
19
, pp.
2033
2055
.
16.
Charlton
,
D. J.
,
Yang
,
J.
, and
The
,
K. K.
, 1994, “
A Review of Methods to Characterize Rubber Elastic Behaviour for Use in Finite Element Analysis
,”
Rubber Chem. Technol.
0035-9475,
67
, pp.
481
503
.
17.
Yeoh
,
O. H.
, 1993, “
Some Forms of the Strain-Energy Function for Rubber
,”
Rubber Chem. Technol.
0035-9475,
66
, pp.
754
771
.
18.
Gil-Negrete
,
N.
,
García-Tárrago
,
M. J.
, and
Viñolas
,
J.
, 2006, “
Influence of the Number of Parameters of a Rubber Isolator Viscoelastic Model on the Predicted Dynamic Behaviour of a Suspended Mass
,”
Proceedings of the ISMA 2006
, Leuven, pp.
1039
1050
.
19.
Betz
,
E.
, 1968,
Spring and Dashpot Models and Their Applications in the Study of the Dynamic Properties of Rubber
, “
Engineering Bulletin Series
,” University of Newcastle, Faculty of Engineering, Department of Mechanical Engineering.
20.
Flügge
,
W.
, 1975,
Viscoelasticity
,
Springer-Verlag
,
Berlin
.
21.
Gil-Negrete
,
N.
, 2004, “
On the Modelling and Dynamic Stiffness Prediction of Rubber Isolators
,” Ph.D. thesis, University of Navarra, San Sebastián, Spain.
22.
Lubliner
,
J.
, 1985, “
A Model of Rubber Viscoelasticity
,”
Mech. Res. Commun.
0093-6413,
12
, pp.
93
99
.
23.
Johnson
,
A. R.
,
Quigley
,
C. J.
, and
Mead
,
J. L.
, 1994, “
Large Strain Viscoelastic Constitutive Models for Rubber
,”
Rubber Chem. Technol.
0035-9475,
67
, pp.
904
917
.
24.
Johnson
,
A. R.
,
Quigley
,
C. J.
, and
Freese
,
C. E.
, 1995, “
A Viscohyperelastic Finite Element Model for Rubber
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
163
180
.
25.
Yang
,
L. M.
,
Shim
,
V. P. W.
, and
Lim
,
C. T.
, 2000, “
A Visco-Hyperelastic Approach to Modeling the Constitutive Behaviour of Rubber
,”
Int. J. Impact Eng.
,
42
, pp.
339
362
. 0734-743X
26.
Simo
,
J. C.
, 1987, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
60
, pp.
153
173
.
27.
Mullins
,
L.
, 1969, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
0035-9475,
42
, pp.
339
362
.
28.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
29.
Bagley
,
R.
, and
Torvik
,
P.
, 1983, “
Fractional Calculus: A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
, pp.
741
748
. 0001-1452
30.
Koeller
,
R. C.
, 1984, “
Applications of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
, pp.
299
307
. 0021-8936
31.
Eldred
,
L. B.
,
Baker
,
W. B.
, and
Palazotto
,
A. N.
, 1996, “
Numerical Application of Fractional Derivative Model Constitutive Relations for Viscoelastic Materials
,”
Comput. Struct.
0045-7949,
60
, pp.
875
882
.
32.
Shimizu
,
N.
, and
Zhang
,
W.
, 1999, “
Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials
,”
JSME Int. J., Ser. C
1340-8062,
42
(
4
), pp.
825
837
.
33.
Enelund
,
M.
, and
Olsson
,
P.
, 1999, “
Damping Described by Fading Memory: Analysis and Applications to Fractional Derivative Models
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
939
970
.
34.
Park
,
S. W.
, 2001, “
Analytical Modelling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
, pp.
8065
8092
. 0020-7683
35.
Sjöberg
,
M.
, and
Kari
,
L.
, 2002, “
Non-Linear Behavior of a Rubber Isolator System Using Fractional Derivatives
,”
Veh. Syst. Dyn.
,
37
(
3
), pp.
217
236
. 0042-3114
36.
Sjöberg
,
M.
, and
Kari
,
L.
, 2003, “
Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model
,”
Nonlinear Dyn.
,
33
(
3
), pp.
323
336
. 0924-090X
37.
García-Tárrago
,
M. J.
,
Kari
,
L.
,
Viñolas
,
J.
, and
Gil-Negrete
,
N.
, 2007, “
Torsion Stiffness of a Rubber Bushing: A Simple Effective Engineering Formula Including Amplitude Dependence
,”
J. Strain Anal. Eng. Des.
0309-3247,
42
(
1
), pp.
13
21
.
38.
García-Tárrago
,
M. J.
,
Kari
,
L.
,
Viñolas
,
J.
, and
Gil-Negrete
,
N.
, 2007, “
Frequency and Amplitude Dependence of the Radial and Axial Stiffness of the Carbon Black Filled Rubber Bushings
,”
Polym. Test.
,
26
, pp.
629
638
. 0142-9418
39.
Padovan
,
J.
, 1987, “
Computational Algorithms for FE Formulations Involving Fractional Operators
,”
Comput. Mech.
0178-7675,
2
, pp.
271
287
.
40.
Enelund
,
M.
,
Mähler
,
L.
,
Runesson
,
K.
, and
Josefson
,
B. L.
, 1999, “
Formulation and Integration of the Standard Linear Viscoelastic Solid With Fractional Order Rate Laws
,”
Int. J. Solids Struct.
,
36
, pp.
2417
2442
. 0020-7683
41.
Zhang
,
W.
, and
Shimizu
,
N.
, 2001, “
FE Formulation for the Viscoelastic Body Modeled by Fractional Constitutive Law
,”
Acta Mech. Sin.
,
17
(
4
), pp.
354
365
. 0567-7718
42.
Schmidt
,
A.
, and
Gaul
,
L.
, 2002, “
Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
37
55
.
43.
Ravindra
,
B.
, and
Mallik
,
A. K.
, 1994, “
Performance of Non-Linear Vibration Isolators Under Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
170
, pp.
325
337
.
44.
Ulmer
,
J. D.
, 1995, “
Strain Dependence of Dynamic Mechanical Properties of Carbon-Black Filled Rubber Compounds
,”
Rubber Chem. Technol.
0035-9475,
69
, pp.
15
47
.
45.
Wineman
,
A.
,
Van Dyke
,
T.
, and
Shi
,
S.
, 1998, “
A Nonlinear Viscoelastic Model for One-Dimensional Response of Elastomeric Bushings
,”
Int. J. Mech. Sci.
,
40
, pp.
1295
1305
. 0020-7403
46.
Lion
,
A.
, 1999, “
Strain-Dependent Properties of Filled Rubber: A Non-Linear Viscoelastic Approach Based on Structural Variables
,”
Rubber Chem. Technol.
0035-9475,
72
, pp.
410
429
.
47.
Miehe
,
C.
, and
Keck
,
J.
, 2000, “
Superimposed Finite Elastic-Viscoelastic-Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
323
365
.
48.
Kaliske
,
M.
, and
Rothert
,
H.
, 1998, “
Constitutive Approach to Rate-Independent Properties of Filled Elastomers
,”
Int. J. Solids Struct.
,
35
, pp.
2057
2071
. 0020-7683
49.
Gregory
,
M. J.
, 1985, “
Dynamic Properties of Rubber in Automotive Engineering
,”
Elastomerics
,
117
, pp.
17
24
.
50.
Austrell
,
E.
,
Olsson
,
A. K.
, and
Jönsson
,
M.
, 2001, “
A Method to Analyse the Non-Linear Dynamic Behaviour of Carbon-Black Filled Rubber Components Using Standard FE Codes
,”
Proceedings of the Second Conference on Constitutive Models for Rubbers
, pp.
231
235
.
51.
ASTM
, 1996, “
Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods
,” ASTM D5992-96, revised 2001.
52.
Payne
,
A. R.
, and
Whittaker
,
R. E.
, 1971, “
Low Strain Dynamic Properties of Filled Rubbers
,”
Rubber Chem. Technol.
0035-9475,
44
, pp.
440
478
.
53.
Besseling
,
J. F.
, 1958, “
A Theory of Elastic, Plastic and Creep Deformation of an Initially Isotropic Material
,”
ASME J. Appl. Mech.
,
25
, pp.
529
536
. 0021-8936
You do not currently have access to this content.