A Mode-III crack problem in a functionally graded material modeled by anisotropic strain-gradient elasticity theory is solved by the integral equation method. The gradient elasticity theory has two material characteristic lengths and , which are responsible for volumetric and surface strain-gradient terms, respectively. The governing differential equation of the problem is derived assuming that the shear modulus G is a function of x, i.e., G=G(x)=G0eβx, where G0 and β are material constants. A hypersingular integrodifferential equation is derived and discretized by means of the collocation method and a Chebyshev polynomial expansion. Numerical results are given in terms of the crack opening displacements, strains, and stresses with various combinations of the parameters , , and β. Formulas for the stress intensity factors, KIII, are derived and numerical results are provided.

1.
Paulino
,
G. H.
,
Chan
,
Y.-S.
, and
Fannjiang
,
A. C.
, 2003, “
Gradient Elasticity Theory for Mode III Fracture in Functionally Graded Materials-Part I: Crack Perpendicular to the Material Gradation
,”
ASME J. Appl. Mech.
0021-8936,
70
(
4
), pp.
531
542
.
2.
Chan
,
Y.-S.
,
Paulino
,
G. H.
, and
Fannjiang
,
A. C.
, 2006, “
Change of Constitutive Relations Due to Interaction Between Strain-Gradient Effect and Material Gradation
,”
ASME J. Appl. Mech.
0021-8936,
73
(
5
), pp.
871
875
.
3.
Exadaktylos
,
G.
,
Vardoulakis
,
I.
, and
Aifantis
,
E.
, 1996, “
Cracks in Gradient Elastic Bodies With Surface Energy
,”
Int. J. Fract.
0376-9429,
79
(
2
), pp.
107
119
.
4.
Vardoulakis
,
I.
,
Exadaktylos
,
G.
, and
Aifantis
,
E.
, 1996, “
Gradient Elasticity With Surface Energy: Mode-III Crack Problem
,”
Int. J. Solids Struct.
0020-7683,
33
(
30
), pp.
4531
4559
.
5.
Fannjiang
,
A. C.
,
Chan
,
Y.-S.
, and
Paulino
,
G. H.
, 2002, “
Strain-Gradient Elasticity for Mode III Cracks: A Hypersingular Integrodifferential Equation Approach
,”
SIAM J. Appl. Math.
0036-1399,
62
(
3
), pp.
1066
1091
.
6.
Chan
,
Y.-S.
,
Paulino
,
G. H.
, and
Fannjiang
,
A. C.
, 2001, “
The Crack Problem for Nonhomogeneous Materials Under Antiplane Shear Loading—A Displacement Based Formulation
,”
Int. J. Solids Struct.
0020-7683,
38
(
17
), pp.
2989
3005
.
7.
Erdogan
,
F.
, 1985, “
The Crack Problem for Bonded Nonhomogeneous Materials Under Antiplane Shear Loading
,”
ASME J. Appl. Mech.
0021-8936,
52
(
4
), pp.
823
828
.
8.
Zhang
,
L.
,
Huang
,
Y.
,
Chen
,
J. Y.
, and
Hwang
,
K. C.
, 1998, “
The Mode III Full-Field Solution in Elastic Materials With Strain Gradient Effects
,”
Int. J. Fract.
0376-9429,
92
(
4
), pp.
325
348
.
9.
Georgiadis
,
H. G.
, 2003, “
The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic Analysis
,”
ASME J. Appl. Mech.
0021-8936,
70
(
4
), pp.
517
530
.
10.
Titchmarsh
,
E. C.
, 1986,
Introduction to the Theory of Fourier Integrals
,
Chelsea
,
New York
.
11.
Kaya
,
A. C.
, and
Erdogan
,
F.
, 1987, “
On the Solution of Integral Equations With Strongly Singular Kernels
,”
Q. Appl. Math.
0033-569X,
45
(
1
), pp.
105
122
.
12.
Monegato
,
G.
, 1994, “
Numerical Evaluation of Hypersingular Integrals
,”
J. Comput. Appl. Math.
0377-0427,
50
, pp.
9
31
.
13.
Chan
,
Y.-S.
,
Fannjiang
,
A. C.
, and
Paulino
,
G. H.
, 2003, “
Integral Equations With Hypersingular Kernels-Theory and Application to Fracture Mechanics
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
683
720
.
14.
Folland
,
G. B.
, 1992,
Fourier Analysis and Its Applications
,
Wadsworth and Brooks/Cole Advanced Books and Software
,
Pacific Grove, CA
.
15.
Stroud
,
A. H.
, and
Secrest
,
D.
, 1966,
Gaussian Quadrature Formulas
,
Prentice-Hall
,
New York
.
16.
Chen
,
J. Y.
,
Huang
,
Y.
,
Zhang
,
L.
, and
Ortiz
,
M.
, 1998, “
Fracture Analysis of Cellular Materials: A Strain Gradient Model
,”
J. Mech. Phys. Solids
0022-5096,
46
(
5
), pp.
789
828
.
17.
Huang
,
Y.
,
Chen
,
J. Y.
,
Guo
,
T. F.
,
Zhang
,
L.
, and
Hwang
,
K. C.
, 1999, “
Analytic and Numerical Studies on Mode I and Mode II Fracture in Elastic-Plastic Materials With Strain Gradient Effects
,”
Int. J. Fract.
0376-9429,
100
(
1
), pp.
1
27
.
18.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1997, “
Strain Gradient Plasticity
,”
Advances in Applied Mechanics
, Vol.
33
,
J. W.
Hutchinson
and
T. Y.
Wu
, eds.,
Academic
,
New York
, pp.
295
361
.
19.
Chen
,
J. Y.
,
Wei
,
Y.
,
Huang
,
Y.
,
Hutchinson
,
J. W.
, and
Hwang
,
K. C.
, 1999, “
The Crack Tip Fields in Strain Gradient Plasticity: The Asymptotic and Numerical Analyses
,”
Eng. Fract. Mech.
0013-7944,
64
, pp.
625
648
.
20.
Shi
,
M. X.
,
Huang
,
Y.
, and
Hwang
,
K. C.
, 2000, “
Fracture in a Higher-Order Elastic Continuum
,”
J. Mech. Phys. Solids
0022-5096,
48
(
12
), pp.
2513
2538
.
21.
Sneddon
,
I. N.
, 1972,
The Use of Integral Transforms
,
McGraw-Hill
,
New York
.
22.
Erdogan
,
F.
, and
Ozturk
,
M.
, 1992, “
Diffusion Problems in Bonded Nonhomogeneous Materials With an Interface Cut
,”
Int. J. Eng. Sci.
0020-7225,
30
(
10
), pp.
1507
1523
.
This content is only available via PDF.
You do not currently have access to this content.