In the present paper, surface Green functions in an anisotropic elastic half-domain subjected to a concentrated force and a line force are derived using Stroh’s formalism considering surface stress and surface elasticity. Formulation of the boundary condition based on Stroh’s formalism is presented and is used to derive the surface Green functions. The displacement field far from the surface is affected only slightly by the surface stress and elasticity. However, the stress field is influenced to a somewhat greater degree by the surface stress and elasticity. The influence of the mechanical properties of the surface on the distributions of displacement and stress near the surface is investigated for various values of surface elastic modulus and surface stress. The surface stress and surface elasticity affect the displacements and stresses, respectively, in different manners. Displacement fields in molecular dynamics are compared with those in the Green function, and it is shown that the results are in fair agreement.

1.
Ibach
,
H.
, 1997, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
0167-5729,
29
, pp.
195
263
.
2.
Muller
,
P.
, and
Saul
,
A.
, 2004, “
Elastic Effects on Surface Physics
,”
Surf. Sci. Rep.
0167-5729,
54
, pp.
157
258
.
3.
Gao
,
Y. F.
, and
Suo
,
Z.
, 2003, “
The Orientation of the Self-Assembled Monolayer Stripes on a Crystalline Substrate
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
147
167
.
4.
Marchenko
,
V. I.
, and
Parshin
,
A. Ya.
, 1980, “
Elastic Properties of Crystal Surfaces
,”
Sov. Phys. JETP
0038-5646,
52
, pp.
129
131
.
5.
Alerhand
,
O. L.
,
Vanderbilt
,
D.
,
Meade
,
R. D.
, and
Joannopoulos
,
J. D.
, 1988, “
Spontaneous Formation of Stress Domains on Crystal Surfaces
,”
Phys. Rev. Lett.
0031-9007,
61
(
17
), pp.
1973
1976
.
6.
Shilkot
,
L. E.
, and
Srolovitz
,
D. J.
, 1996, “
Elastic Field of a Surface Step: Atomistic Simulations and Anisotropic Elastic Theory
,”
Phys. Rev. B
0163-1829,
53
(
16
), pp.
11120
11127
.
7.
Kukta
,
R. V.
,
Peralta
,
A.
, and
Kouris
,
D.
, 2002, “
Elastic Interaction of Surface Steps: Effect of Atomic-Scale Roughness
,”
Phys. Rev. Lett.
0031-9007,
88
(
18
),
186102
.
8.
Kukta
,
R.
,
Peralta
,
A.
, and
Kouris
,
D.
, 2002, “
Surface Step: From Atomistics to Continuum
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
443
450
.
9.
Kukta
,
R. V.
, and
Bhattacharya
,
K.
, 2002, “
A Micromechanical Model of Surface Steps
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
615
649
.
10.
Shenoy
,
V. B.
, and
Ciobanu
,
C. V.
, 2004, “
Orientation Dependence of the Stiffness of Surfaces Steps: An Analysis Based on Anisotropic Elasticity
,”
Surf. Sci.
0039-6028,
554
, pp.
222
232
.
11.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
, pp.
291
323
.
12.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1978, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
431
440
.
13.
Gurtin
,
M. E.
,
Weissmüller
,
J.
, and
Larché
,
F.
, 1998, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
(
5
), pp.
1093
1109
.
14.
Thomson
,
R.
,
Chuang
,
T.-J.
, and
Lin
,
I.-H.
, 1986, “
The Role of Surface Stress in Fracture
,”
Acta Metall.
0001-6160,
34
(
6
), pp.
1133
1143
.
15.
Koguchi
,
H.
, 1992, “
Stress Analysis for Nano-Scaled Elastic Materials (1st Report, Formulation of Boundary Condition for Interface With Surface Stress)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
58
(
555
), pp.
2132
2137
.
16.
Koguchi
,
H.
, 1996, “
Stress Analysis for Nano-Scaled Elastic Materials (Elastic Contact Problems Considering Surface Stresses)
,”
JSME Int. J., Ser. A
1340-8046,
39
(
3
), pp.
3337
3345
.
17.
Koguchi
,
H.
, 2003, “
Surface Deformation Indecued by A Variation in Surface Stresses in Anisotropic Half-Regions
,”
Philos. Mag.
1478-6435,
83
(
10
), pp.
1205
1226
.
18.
Koguchi
,
H.
, 1997, “
Fundamental Solution for a Prismatic Dislocation Loop in a Two-Phase Transversely Isotropic Elastic Material Considering Interfacial Energy
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
63
(
615
), pp.
2417
2423
.
19.
Koguchi
,
H.
, 2000, “
Characteristics of Surface Wave Propagation at Nanometer Range of Wave Length
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
66
(
645
), pp.
1030
1038
.
20.
Koguchi
,
H.
, 2004, “
Contact and Adhesion Analysis Considering a Variation of Surface Stresses (1st Report, A Comparison of Fundamental Theory and Hertz Theory)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
70
(
690
), pp.
289
297
.
21.
Koguchi
,
H.
, 2004, “
Contact and Adhesion Analysis Considering a Variation of Surface Stresses (2nd Report, A Comparison of The Present Theory and JKR Theory)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
70
(
697
), pp.
1332
1340
.
22.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1574
1596
.
23.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Eshelby Formalism for Nano-inhomogeneities
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
3335
3353
.
24.
He
,
L. H.
, and
Lim
,
C. W.
, 2006, “
Surface Green Function for a Soft Elastic Half-Space: Influence of Surface Stress
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
132
143
.
25.
He
,
L. H.
, and
Li
,
Z. R.
, 2006, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6208
6219
.
26.
Mi
,
C.
, and
Kouris
,
D. A.
, 2006, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
1559-3959,
1
(
4
), pp.
763
792
.
27.
Mi
,
C.
, and
Kouris
,
D. A.
, 2007, “
The Role of Interface Stress for Nanoparticles Embedded in Films
,”
Journal of Solid Mechanics and Materials Engineering
,
1
(
10
), pp.
1219
1230
.
28.
Wu
,
K.-C.
, 1998, “
Generalization of the Stroh Formalism to 3-Dimensional Anisotropic
,”
J. Elast.
0374-3535,
51
, pp.
213
225
.
29.
Ting
,
T. C. T.
, 1992, “
Image Singularities of Green’s Functions for Anisotropic Elastic Half-Spaces and Bimaterials
,”
Q. J. Mech. Appl. Math.
0033-5614,
45
, pp.
119
139
.
30.
Ting
,
T. C. T.
, and
Lee
,
V.-G.
, 1997, “
The Three-Dimensional Elatostatic Green’s Function for General Anisotropic Linear Elastic Solids
,”
Q. J. Mech. Appl. Math.
0033-5614,
50
(
3
), pp.
407
426
.
31.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Application
.
Oxford University Press
,
New York
.
32.
Yang
,
B.
, and
Pan
,
E.
, 2001, “
Three-Dimensional Green’s Functions in Anisotropic Trimaterials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2235
2255
.
33.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
, 2005, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1827
1854
.
34.
Willis
,
J. R.
, 1965, “
The Elastic Interaction Energy of Dislocation Loops in Anisotropic Media
,”
Q. J. Mech. Appl. Math.
0033-5614,
18
, pp.
419
433
.
35.
Finnis
,
M. W.
, and
Sinclair
,
J. E.
, 1984, “
A Simple Empirical n-Body Potential for Transition Metals
,”
Philos. Mag. A
0141-8610,
50
(
1
), pp.
45
55
,
Finnis
,
M. W.
, and
Sinclair
,
J. E.
,1986,
Philos. Mag. A
0141-8610,
53
(
1
), p.
161
(E).
36.
Ackland
,
G. J.
, and
Finnis
,
M. W.
, 1986, “
Semi-Empirical Calculation of Solid Surface Tensions in b.c.c. Transition Metals
,”
Philos. Mag. A
0141-8610,
54
, pp.
301
315
.
37.
Izumi
,
S.
,
Hara
,
S.
,
Kumagai
,
T.
, and
Sakai
,
S.
, 2004, “
A Method for Calculating Surface Stress and Surface Elastic Constants by Molecular Dynamics: Application to the Surface of Crystal and Amorphous Silicon
,”
Thin Solid Films
0040-6090,
467
, pp.
253
260
.
38.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
, pp.
301
342
.
You do not currently have access to this content.