In this paper, we generalize the idea of the free-body diagram for analytical mechanics for representations of mechanical systems in configuration space. The configuration space is characterized locally by an Euclidean tangent space. A key element in this work relies on the relaxation of constraint conditions. A new set of steps is proposed to treat constrained systems. According to this, the analysis should be broken down to two levels: (1) the specification of a transformation via the relaxation of the constraints; this defines a subspace, the space of constrained motion; and (2) specification of conditions on the motion in the space of constrained motion. The formulation and analysis associated with the first step can be seen as the generalization of the idea of the free-body diagram. This formulation is worked out in detail in this paper. The complement of the space of constrained motion is the space of admissible motion. The parametrization of this second subspace is generally the task of the analyst. If the two subspaces are orthogonal then useful decoupling can be achieved in the dynamics formulation. Conditions are developed for this orthogonality. Based on this, the dynamic equations are developed for constrained and admissible motions. These are the dynamic equilibrium equations associated with the generalized free-body diagram. They are valid for a broad range of constrained systems, which can include, for example, bilaterally constrained systems, redundantly constrained systems, unilaterally constrained systems, and nonideal constraint realization.

1.
Papastavridis
,
J. G.
, 2002,
Analytical Mechanics
,
Oxford University Press
,
New York
.
2.
Hamel
,
G.
, 1949,
Theoretische Mechanik
,
Springer
,
Berlin
.
3.
Leipholz
,
H. H. E.
, 1978,
Six Lectures on Variational Principles in Structural Engineering
,
Solid Mechanics Division, University of Waterloo
,
Waterloo
.
4.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics, Theory and Applications
,
McGraw-Hill
,
New York
.
5.
Djerassi
,
S.
, and
Bamberger
,
H.
, 2003, “
Constraint Forces and the Method of Auxiliary Generalized Speeds
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
568
574
.
6.
Lesser
,
M.
, 1992, “
A Geometrical Interpretation of Kane’s Equations
,”
Proc. R. Soc. London
,
436
, pp.
69
87
. 0370-1662
7.
Blajer
,
W.
, 2004, “
On the Determination of Joint Reactions in Multibody Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
341
350
.
8.
Synge
,
J. L.
, 1927, “
On the Geometry of Dynamics
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
226
, pp.
31
106
.
9.
Synge
,
J. L.
, and
Schild
,
A.
, 1969,
Tensor Calculus
,
University of Toronto
,
Toronto
.
10.
Brauchli
,
H.
, 1991, “
Mass-Orthogonal Formulation of Equations of Motion for Multibody Systems
,”
Z. Angew. Math. Phys.
,
42
, pp.
169
182
. 0044-2275
11.
Blajer
,
W.
, 1997, “
A Geometric Unification of Constrained System Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
3
21
.
12.
Blajer
,
W.
, 2001, “
A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics
,”
Z. Angew. Math. Mech.
0044-2267,
81
(
4
), pp.
247
259
.
13.
Papastavridis
,
J. G.
, 1998,
Tensor Calculus and Analytical Dynamics
,
CRC
,
Boca Raton, FL
.
14.
Blajer
,
W.
, 1992, “
A Projection Method Approach to Constrained Dynamic Analysis
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
643
649
.
15.
Glocker
,
Ch.
, 2001,
Set-Valued Force Laws: Dynamics of Non-Smooth Systems
,
Springer-Verlag
,
Berlin
.
16.
Kövecses
,
J.
,
Piedbœuf
,
J.-C.
, and
Lange
,
C.
, 2003, “
Dynamics Modeling and Simulation of Constrained Robotic Systems
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
165
177
. 1083-4435
17.
Kövecses
,
J.
, and
Piedboeuf
,
J.-C.
, 2003, “
A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems
,” ASME Paper No. DETC2003-VIB-48318.
18.
Kövecses
,
J.
, 2008, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram, Part II: Imposition of Constraints
,”
ASME J. Appl. Mech.
0044-2267,
75
(
6
), p.
061013
.
19.
Béda
,
Gy.
,
Kozák
,
I.
, and
Verhás
,
J.
, 1989,
Continuum Mechanics
,
Academic Press
,
Budapest
.
20.
Truesdell
,
C.
, 1953, “
The Physical Components of Vectors and Tensors
,”
Z. Angew. Math. Mech.
,
33
(
10/11
), pp.
345
356
. 0044-2267
21.
Campbell
,
S. L.
, and
Meyer
,
C. D.
, 1979,
Generalized Inverses of Linear Transformations
,
Pitman
,
London
.
22.
Golub
,
G. H.
, and
van Loan
,
C. F.
, 1996,
Matrix Computations
, 3rd ed.,
The Johns Hopkins University Press
,
Baltimore
.
23.
O’Reilly
,
O. M.
, and
Srinivasa
,
A. R.
, 2001, “
On a Decomposition of Generalized Constraint Forces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
457
, pp.
1307
1313
.
24.
Rosenberg
,
R. M.
, 1977,
Analytical Dynamics of Discrete Systems
,
Plenum Press
,
New York
.
25.
Chen
,
K.
,
Beale
,
D. G.
, and
Wang
,
D.
, 2002, “
A New Method to Determine the Base Inertial Parameters of Planar Mechanisms
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
971
984
.
You do not currently have access to this content.