A finite-deformation shell theory for carbon nanotubes (CNTs) is established directly from the interatomic potential for carbon to account for the effect of bending and curvature. Its constitutive relation accounts for the nonlinear multibody atomistic interactions and therefore can model the important effect of CNT chirality and radius. The equilibrium equations and boundary conditions are obtained for the symmetric stresses and bending moments, which are different from many existing shell theories that involve asymmetric stress and bending moments. The theory is used in Part II of this paper to study the instability of carbon nanotubes subjected to different loadings.

1.
Srivastava
,
D.
,
Menon
,
M.
, and
Cho
,
K. J.
, 2001, “
Computational Nanotechnology With Carbon Nanotubes and Fullerenes
,”
Comput. Sci. Eng.
1521-9615,
3
, pp.
42
55
.
2.
Yakobson
,
B. I.
, and
Avouris
,
P.
, 2001, “
Mechanical Properties of Carbon Nanotubes
,”
Top. Appl. Phys.
0303-4216,
80
, pp.
287
329
.
3.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M.-F.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
533
.
4.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
5.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
14013
14019
.
6.
Muster
,
J.
,
Burghard
,
M.
,
Roth
,
S.
,
Duesberg
,
G. S.
,
HernMandez
,
E.
, and
Rubio
,
A.
, 1998, “
Scanning Force Microscopy Characterization of Individual Carbon Nanotubes on Electrode Arrays
,”
J. Vac. Sci. Technol. B
1071-1023,
16
, pp.
2796
2801
.
7.
Salvetat
,
J.-P.
,
Briggs
,
G. A. D.
,
Bonard
,
J.-M.
,
Bacsa
,
R. R.
, and
Kulik
,
A. J.
, 1999, “
Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
944
947
.
8.
Tombler
,
T. W.
,
Zhou
,
C.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H.
,
Liu
,
L.
,
Jayanthi
,
C. S.
,
Tang
,
M.
, and
Wu
,
S.-Y.
, 2000, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature (London)
0028-0836,
405
, pp.
769
772
.
9.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
, 1992, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
0163-1829,
45
, pp.
12592
12595
.
10.
Overney
,
G.
,
Zhong
,
W.
, and
TomManek
,
D.
, 1993, “
Structural Rigidity and Low-Frequency Vibrational Modes of Long Carbon Tubules
,”
Z. Phys. D: At., Mol. Clusters
0178-7683,
27
, pp.
93
96
.
11.
Molina
,
J. M.
,
Savinsky
,
S. S.
, and
Khokhriakov
,
N. V.
, 1996, “
A Tight-Binding Model for Calculations of Structures and Properties of Graphitic Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
, pp.
4652
4656
.
12.
Halicioglu
,
T.
, 1998, “
Stress Calculations for Carbon Nanotubes
,”
Thin Solid Films
0040-6090,
312
, pp.
11
14
.
13.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
4502
4505
.
14.
Goze
,
C.
,
Vaccarini
,
L.
,
Henrard
,
L.
,
Bernier
,
P.
,
Hernandez
,
E.
, and
Rubio
,
A.
, 1999, “
Elastic and Mechanical Properties of Carbon Nanotubes
,”
Synth. Met.
0379-6779,
103
, pp.
2500
2501
.
15.
Sánchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejón
,
P.
, 1999, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
, pp.
12678
12688
.
16.
Van Lier
,
G.
,
Van Alsenoy
,
C.
,
Van Doran
,
V.
, and
Geerlings
,
P.
, 2000, “
Ab Initio Study of the Elastic Properties of Single-Walled Carbon Nanotubes and Graphene
,”
Chem. Phys. Lett.
0009-2614,
326
, pp.
181
185
.
17.
Popov
,
V. N.
,
van Doren
,
V. E.
, and
Balkanski
,
M.
, 2000, “
Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
61
, pp.
3078
3084
.
18.
Prylutskyy
,
Y. I.
,
Durov
,
S. S.
,
Ogloblya
,
O. V.
,
Buzaneva
,
E. V.
, and
Scharff
,
P.
, 2000, “
Molecular Dynamics Simulations of Mechanical, Vibrational and Electronic Properties of Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
17
, pp.
352
355
.
19.
Vaccarini
,
L.
,
Goze
,
C.
,
Henrard
,
L.
,
HernMandez
,
E.
,
Bernier
,
P.
, and
Rubio
,
A.
, 2000, “
Mechanical and Electronic Properties of Carbon and Boron-Nitride Nanotubes
,”
Carbon
0008-6223,
38
, pp.
1681
1690
.
20.
Zhou
,
G.
,
Duan
,
W.
, and
Gu
,
B.
, 2001, “
First-Principles Study on Morphology and Mechanical Properties of Single-Walled Carbon Nanotube
,”
Chem. Phys. Lett.
0009-2614,
333
, pp.
344
349
.
21.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
, 2004, “
The Atomic-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1849
1864
.
22.
Liu
,
B.
,
Yu
,
M. F.
, and
Huang
,
Y.
, 2004, “
Role of Lattice Registry in the Full Collapse and Twist Formation of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
70
, p.
161402
.
23.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2002, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1941
1977
.
24.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
25.
Zhang
,
P.
,
Jiang
,
H.
,
Huang
,
Y.
,
Geubelle
,
P. H.
, and
Hwang
,
K. C.
, 2004, “
An Atomistic-Based Continuum Theory for Carbonnanotubes: Analysis of Fracture Nucleation
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
977
998
.
26.
Yang
,
J. Z.
, and
E
,
W.
, 2006, “
Generalized Cauchy–Born Rules for Elastic Deformation of Sheets, Plates, and Rods: Derivation of Continuum Models From Atomistic Models
,”
Phys. Rev. B
0163-1829,
74
, p.
184110
.
27.
Weiner
,
J. H.
, 1983,
Statistical Mechanics of Elasticity
,
Wiley
,
New York
.
28.
Tadmor
,
E. B.
,
Smith
,
G. S.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Mixed Finite Element and Atomistic Formulation for Complex Crystals
,”
Phys. Rev. B
0163-1829,
59
, pp.
235
245
.
29.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
0163-1829,
42
, pp.
9458
9471
.
30.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984,
14
, pp.
783
802
.
31.
Wu
,
J.
,
Hwang
,
K. C.
, and
Huang
,
Y.
, 2008, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
,
279
292
.
32.
Born
,
M.
, and
Huang
,
K.
, 1959,
Dynamical Theory of Crystal Lattices
,
Oxford University Press
,
New York
.
33.
Sanders
,
J. L.
, 1963, “
Nonlinear Theories for Thin Shells
,”
Q. Appl. Math.
,
21
, pp.
21
36
. 0033-569X
34.
Koiter
,
W. T.
, 1966, “
On the Nonlinear Theory of Thin Elastic Shells, I, II, III
,”
Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.
,
69
, pp.
1
54
. 0033-569X
35.
Niordson
,
F.
, 1985,
Shell Theory
(North-Holland Series in Applied Mathematics and Mechanics)
Vol.
29
,
North-Holland
,
Amsterdam
.
36.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
, 2006, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
74
, p.
245413
.
37.
Lu
,
J. P.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
1297
1300
.
38.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2487
2499
.
39.
Jin
,
Y.
, and
Yuan
,
F. G.
, 2003, “
Simulation of Elastic Properties of Single-Walled Carbon Nanotubes
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1507
1515
.
40.
Zhou
,
X.
,
Zhou
,
J. J.
, and
Ou-yang
,
Z. C.
, 2000, “
Strain Energy and Young’s Modulus of Single-Wall Carbon Nanotubes Calculated From Electronic Energy-Band Theory
,”
Phys. Rev. B
0163-1829,
62
, pp.
13692
13696
.
41.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
, 2001, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
0163-1829,
64
, p.
235406
.
42.
Tu
,
Z. C.
, and
Ou-yang
,
Z.
, 2002, “
Single-Walled and Multi-Walled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young’s Moduli Dependent on Layer Number
,”
Phys. Rev. B
0163-1829,
65
, p.
233407
.
43.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
C. M.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
44.
Wang
,
L. F.
,
Zheng
,
Q. S.
,
Liu
,
J. Z.
, and
Jiang
,
Q.
, 2005, “
Size Dependence of the Thin-Shell Model for Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
105501
.
45.
Tersoff
,
J.
, 1988, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
0163-1829,
37
, pp.
6991
7000
.
You do not currently have access to this content.