A short-range-correlation (SRC) model is introduced in the framework of Markov/Gibbs random field theory to characterize and simulate random media. The Metropolis spin-flip algorithm is applied to build a robust simulator for multiphase random materials. Through development of the SRC model, several crucial conceptual ambiguities are clarified, and higher-order statistical simulation of random materials becomes computationally feasible. In the numerical examples, second- and third-order statistical simulations are demonstrated for biphase random materials, which shed light on the relationship between nth-order correlation functions and morphological features. Based on the observations, further conjectures are made concerning some fundamental morphological questions, particularly for future investigation of physical behavior of random media. It is expected that the SRC model can also be extended to third- and higher-order simulations of non-Gaussian stochastic processes such as wind pressure, ocean waves, and earthquake accelerations, which is an important research direction for high fidelity simulation of physical processes.

1.
Torquato
,
S.
, 2002,
Random Heterogeneous Materials, Microstructure and Macroscopic Properties
,
Springer
,
New York
.
2.
Sahimi
,
M.
, 2003,
Heterogeneous Materials I, Linear Transport and Optical Properties
,
Springer
,
New York
.
3.
Milton
,
G. W.
, 2002,
The Theory of Composites
,
Cambridge University Press
,
Cambridge
.
4.
Li
,
S. Z.
, 1995,
Markov Random Field Modeling in Computer Vision
,
Springer
,
New York
.
5.
Haralick
,
R. M.
, and
Shapiro
,
L. G.
, 1992,
Computer and Robot Vision
, Vol.
I
,
Addison-Wesley
,
Reading, MA
.
6.
Torquato
,
S.
, 2002, “
Statistical Description of Microstructures
,”
Annu. Rev. Mater. Res.
1531-7331,
32
, pp.
77
111
.
7.
Adler
,
P. M.
, 1992,
Porous Media—Geometry and Transports
,
Butterworth-Heinemann
,
New York
.
8.
Johnson
,
M. E.
, 1987,
Multivariate Statistical Simulation
,
Wiley
,
New York
.
9.
Yeong
,
C. L. Y.
, and
Torquato
,
S.
, 1998, “
Reconstruction Random Media
,”
Phys. Rev. E
1063-651X,
57
, pp.
495
506
.
10.
Mardia
,
K. V.
, 1970, “
Translation Family of Bivariate Distribution and Frechet’s Bounds
,”
Sankhya, Ser. A
0581-572X
32
, pp.
119
122
.
11.
Grigoriu
,
M.
, 1984, “
Crossings of Non-Gaussian Translation Processes
,”
J. Eng. Mech.
0733-9399,
110
(
4
), pp.
610
620
.
12.
Joshi
,
M. Y.
, 1974, “
A Class of Stochastic Models for Porous Media
,” Ph.D. thesis, University of Kansas, Lawrence, KS.
13.
Quiblier
,
J. A.
, 1984, “
A New Three-Dimensional Modeling Technique for Studying Porous Media
,”
J. Colloid Interface Sci.
0021-9797,
98
, pp.
84
102
.
14.
Giona
,
M.
, and
Adrover
,
A.
, 1996, “
Closed-Form Solution for the Reconstruction Problem in Porous Media
,”
AIChE J.
0001-1541,
42
, pp.
1407
1415
.
15.
Cahn
,
J. W.
, 1965, “
Phase Separation by Spinodal Decomposition in Isotropic Systems
,”
J. Chem. Phys.
0021-9606,
42
(
1
), pp.
93
99
.
16.
Berk
,
N. F.
, 1991, “
Scattering Properties of the Leveled-Wave Model of Random Morphologies
,”
Phys. Rev. A
1050-2947,
44
(
8
), pp.
5069
5079
.
17.
Roberts
,
A. P.
, and
Teubner
,
M.
, 1995, “
Transport Properties of Heterogeneous Materials Derived From Gaussian Random Fields: Bounds and Simulation
,”
Phys. Rev. E
1063-651X,
51
(
5
), pp.
4141
4154
.
18.
Roberts
,
A. P.
, and
Knackstedt
,
M. A.
, 1996, “
Structure-Property Correlations in Model Composite Materials
,”
Phys. Rev. E
1063-651X,
54
(
3
), pp.
2313
2328
.
19.
Grigoriu
,
M.
, 2003, “
Random Field Models for Two-Phase Microstructures
,”
J. Appl. Phys.
0021-8979,
94
(
6
), pp.
3762
3770
.
20.
Levitz
,
P.
, 1998, “
Off-Lattice Reconstruction of Porous Media: Critical Evaluation, Geometrical Confinement and Molecular Transport
,”
Adv. Colloid Interface Sci.
0001-8686,
76–77
, pp.
71
106
.
21.
Kainourgiakis
,
M. E.
,
Kikkinides
,
E. S.
,
Steriotis
,
T. A.
,
Stubos
,
A. K.
,
Tzevelekos
,
K. P.
, and
Kanellopoulos
,
N. K.
, 2000, “
Structural and Transport Properties of Alumina Porous Membranes From Process-Based and Statistical Reconstruction Techniques
,”
J. Colloid Interface Sci.
0021-9797,
231
, pp.
158
167
.
22.
Xu
,
X. F.
, 2005, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD.
23.
Julesz
,
B.
, 1962, “
Visual Pattern Discrimination
,”
IRE Trans. Inf. Theory
0096-1000,
IT-8
, pp.
84
92
.
24.
Hazlett
,
R. D.
, 1997, “
Statistical Characterization and Stochastic Modeling of Pore Networks in Relation to Fluid Flow
,”
Math. Geol.
0882-8121,
29
, pp.
801
822
.
25.
Talukdar
,
M. S.
,
Torsaeter
,
O.
, and
Ioannidis
,
M. A.
, 2002, “
Stochastic Reconstruction of Particulate Media From Two-Dimensional Images
,”
J. Colloid Interface Sci.
0021-9797,
248
, pp.
419
428
.
26.
Bochenek
,
B.
, and
Pyrz
,
R.
, 2004, “
Reconstruction of Random Microstructures—A Stochastic Optimization Problem
,”
Comput. Mater. Sci.
0927-0256,
31
, pp.
83
112
.
27.
Julesz
,
B.
,
Gilbert
,
E. N.
,
Shepp
,
L. A.
, and
Frisch
,
H. L.
, 1973, “
Inability of Humans to Discriminate Between Visual Textures That Agree in Second-Order Statistics—Revisited
,”
Perception
0301-0066,
2
, pp.
391
405
.
28.
Chubb
,
C.
, and
Yellot
,
J. I.
, 2000, “
Every Discrete, Finite Image is Uniquely Determined by Its Dipole Histogram
,”
Vision Res.
0042-6989,
40
, pp.
485
492
.
29.
Rozman
,
M. G.
, and
Utz
,
M.
, 2002, “
Uniqueness of Reconstruction of Multiphase Morphologies From Two-Point Correlation Functions
,”
Phys. Rev. Lett.
0031-9007,
89
(
13
), pp.
135501
.
30.
Fienup
,
J. R.
, 1982, “
Phase Retrieval Algorithms: A Comparison
,”
Appl. Opt.
0003-6935,
21
(
15
), pp.
2758
2769
.
31.
Anguy
,
Y.
,
Ehrlich
,
R.
, and
Mercet
,
C.
, 2003, “
Is It Possible to Characterize the Geometry of a Real Porous Medium by a Direct Measurement on a Finite Section? 1: The Phase-Retrieval Problem
,”
Math. Geol.
0882-8121,
35
(
7
), pp.
763
788
.
32.
Gagalowicz
,
A.
, and
Ma
,
S. D.
, 1985, “
Sequential Synthesis of Natural Textures
,”
Comput. Vis. Graph. Image Process.
0734-189X,
30
, pp.
289
315
.
33.
Aubert
,
A.
, and
Jeulin
,
D.
, 2000, “
Estimation of the Influence of Second- and Third-Order Moments on Random Sets Reconstructions
,”
Pattern Recogn.
0031-3203,
33
(
6
), pp.
1083
1104
.
34.
Tyler
,
C. W.
, 2004, “
Theory of Texture Discrimination of Based on Higher-Order Perturbations in Individual Texture Samples
,”
Vision Res.
0042-6989,
44
, pp.
2179
2186
.
35.
Xu
,
X. F.
, and
Graham-Brady
,
L.
, 2005, “
A Stochastic Computation Method for Evaluation of Global and Local Behavior of Random Elastic Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
42–44
), pp.
4362
4385
.
36.
Hammersley
,
J. M.
, and
Clifford
,
P.
, 1971, “
Markov Field on Finite Graphs and Lattices
,” unpublished.
37.
1972,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,
9th ed.
,
M.
Abramowitz
and
I. A.
Stegun
, eds.
Dover
,
New York
, p.
11
.
38.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
, 1953, “
Equations of State Calculations by Fast Computational Machine
,”
J. Chem. Phys.
0021-9606,
21
, pp.
1087
1091
.
39.
Geman
,
S.
, and
Geman
,
D.
, 1984, “
Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
6
(
6
), pp.
721
741
.
40.
Elfadel
,
I. M.
, and
Picard
,
R. W.
, 1994, “
Gibbs Random Fields, Cooccurrences, and Texture Modeling
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
16
(
1
), pp.
24
37
.
41.
Copeland
,
A. C.
,
Ravichandran
,
G.
,
Trivedi
,
M. M.
, 2001, “
Texture Synthesis Using Gray-Level Cooccurrence Models: Algorithms, Experimental Analysis, and Psychophysical Support
,”
Opt. Eng. (Bellingham)
0091-3286,
40
(
11
), pp.
2655
2673
.
42.
Nikias
,
C. L.
, and
Petropulu
,
A. P.
, 1993,
Higher-Order Spectra Analysis, A Nonlinear Signal Processing Framework
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
43.
Gagalowicz
,
A.
, and
Tournier-Lasserve
,
C.
, 1986, “
Third Order Model for Non-Homogeneous Natural Textures
,”
Proceedings of the Eighth International Conference on Pattern Recognition
, pp.
409
411
.
44.
Rozman
,
M. G.
, and
Utz
,
M.
, 2001, “
Efficient Reconstruction of Multiphase Morphologies From Correlation Functions
,”
Phys. Rev. E
1063-651X,
63
(
6
), p.
066701
.
45.
Frisch
,
H. L.
, 1965, “
Statistics of Random Media
,”
Trans. Soc. Rheol.
0038-0032,
9
(
1
), pp.
293
312
.
46.
Pikaz
,
A.
, and
Averbuch
,
A.
, 1998, “
On the Relation Between Second-Order Statistics, Connectivity Analysis, and Percolation Models in Digital Textures
,”
Graph. Models Image Process.
1077-3169,
60
(
3
), pp.
226
232
.
47.
Hilfer
,
R.
, and
Manwart
,
C.
, 2001, “
Permeability and Conductivity for Reconstruction Models of Porous Media
,”
Phys. Rev. E
1063-651X,
64
(
2
), p.
021304
.
48.
Myroshnychenko
,
V.
, and
Brosseau
,
C.
, 2005, “
Finite-Element Method for Calculation of the Effective Permittivity of Random Inhomogeneous Media
,”
Phys. Rev. E
1063-651X,
71
(
1
), p.
016701
.
49.
Berryman
,
J. G.
, 1985, “
Measurement of Spatial Correlation Function Using Image Processing Techniques
,”
J. Appl. Phys.
0021-8979,
57
(
7
), pp.
2374
2384
.
50.
Tewari
,
A.
,
Gokhale
,
A. M.
,
Spowart
,
J. E.
, and
Miracle
,
D. B.
, 2004, “
Quantitative Characterization of Spatial Clustering in Three-Dimensional Microstructures Using Two-Point Correlation Functions
,”
Acta Mater.
1359-6454,
52
(
2
), pp.
307
319
.
51.
Yamazaki
,
F.
, and
Shinozuka
,
M.
, 1988, “
Digital Generation of Non-Gaussian Stochastic Fields
,”
J. Eng. Mech.
0733-9399,
114
(
7
), pp.
1183
1197
.
52.
Johnson
,
G. E.
, 1993, “
Construction of Particular Random Processes
,”
Proc. IEEE
0018-9219,
82
(
2
), pp.
270
285
.
53.
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1996, “
Generation of Non-Gaussian Stationary Stochastic Processes
,”
Phys. Rev. E
1063-651X,
54
(
1
), pp.
299
303
.
54.
Gurley
,
K. R.
,
Kareem
,
A.
, and
Tognarelli
,
M. A.
, 1996, “
Simulation of a Class of Non-Normal Random Processes
,”
Int. J. Non-Linear Mech.
0020-7462,
31
(
5
), pp.
601
617
.
55.
Grigoriu
,
M.
, 1998, “
Simulation of Stationary Non-Gaussian Translation Processes
,”
J. Eng. Mech.
0733-9399,
124
(
2
), pp.
121
126
.
56.
Deodatis
,
G.
, and
Micaletti
,
R. C.
, 2001, “
Simulation of Highly Skewed Non-Gaussian Stochastic Processes
,”
J. Eng. Mech.
0733-9399,
127
(
12
), pp.
1284
1295
.
You do not currently have access to this content.