The interaction integral method that is equipped with the nonequilibrium formulation is generalized to evaluate the nonsingular T-stress as well as mixed-mode stress intensity factors in orthotropic functionally graded materials under thermomechanical loads. This paper addresses both Mode-I and mixed-mode fracture problems and considers various types of orthotropic material gradation. The orthotropic thermomechanical material properties are graded spatially and integrated into the element stiffness matrix using the direct Gaussian formulation. The types of orthotropic material gradation considered include exponential, power-law, and hyperbolic-tangent functions, and the numerical formulation is generalized for any type of smooth material gradation. The T-stress and mixed-mode stress intensity factors are evaluated by means of the interaction integral method developed in conjunction with the finite element method. The accuracy of numerical results is assessed by means of thermomechanically equivalent problems.

1.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1965, “
On Cracks in Rectilinearly Anisotropic Bodies
,”
Int. J. Fract. Mech.
0020-7268,
1
(
2
), pp.
189
203
.
2.
Williams
,
M. L.
, 1957, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
0021-8936,
24
(
1
), pp.
109
114
.
3.
Williams
,
J. G.
, and
Ewing
,
P. D.
, 1972, “
Fracture Under Complex Stress-the Angled Crack Problem
,”
Int. J. Fract.
,
8
(
4
), pp.
441
446
.
4.
Ueda
,
Y.
,
Ikeda
,
K.
,
Yao
,
T.
, and
Aoki
,
M.
, 1983, “
Characteristics of Brittle Failure Under General Combined Modes Including Those Under Bi-axial Tensile Loads
,”
Eng. Fract. Mech.
0013-7944,
18
(
6
), pp.
1131
1158
.
5.
Smith
,
D. J.
,
Ayatollahi
,
M. R.
, and
Pavier
,
M. J.
, 2001, “
The Role of T-Stress in Brittle Fracture for Linear Elastic Materials Under Mixed-Mode Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
(
2
), pp.
137
150
.
6.
Cotterell
,
B.
, and
Rice
,
J. R.
, 1980, “
Slightly Curved or Kinked Cracks
,”
Int. J. Fract.
0376-9429,
16
(
2
), pp.
155
169
.
7.
O’ Dowd
,
N. P.
,
Shih
,
C. F.
, and
Dodds
,
R. H.
, Jr.
, 1995, “
The Role of Geometry and Crack Growth on Constraint and Implications for Ductile∕Brittle Fracture
,”
Constraint Effects in Fracture Theory and Applications
, ASTM STP 1244 Vol.
2
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
134
159
.
8.
Larsson
,
S. G.
, and
Carlson
,
A. J.
, 1973, “
Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
21
(
4
), pp.
263
277
.
9.
Betegón
,
C.
, and
Hancock
,
J. W.
, 1991, “
Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
0021-8936,
58
(
1
), pp.
104
110
.
10.
Du
,
Z.-Z.
, and
Hancock
,
J. W.
, 1991, “
The Effect of Non-Singular Stresses on Crack-Tip Constraint
,”
J. Mech. Phys. Solids
0022-5096,
39
(
3
), pp.
555
567
.
11.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1991, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-I. Structure of Fields
,”
J. Mech. Phys. Solids
0022-5096,
39
(
8
), pp.
989
1015
.
12.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
, 1992, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter-II. Fracture Applications
,”
J. Mech. Phys. Solids
0022-5096,
40
(
5
), pp.
939
963
.
13.
Delale
,
F.
, and
Erdogan
,
F.
, 1983, “
The Crack Problem for a Nonhomogeneous Plane
,”
ASME J. Appl. Mech.
0021-8936,
50
(
3
), pp.
609
614
.
14.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
0961-9526,
5
(
7
), pp.
753
770
.
15.
Lee
,
Y.-D.
, and
Erdogan
,
F.
, 1995, “
Residual∕Thermal Stresses in FGM and Laminated Thermal Barrier Coatings
,”
Int. J. Fract.
0376-9429,
69
(
2
), pp.
145
165
.
16.
Erdogan
,
F.
, and
Wu
,
B. H.
, 1996, “
Crack Problems in FGM Layers Under Thermal Stresses
,”
J. Therm. Stresses
0149-5739,
19
(
3
), pp.
237
265
.
17.
Erdogan
,
F.
, and
Wu
,
B. H.
, 1997, “
The Surface Crack Problem for a Plate With Functionally Graded Properties
,”
ASME J. Appl. Mech.
0021-8936,
64
(
3
), pp.
449
456
.
18.
El-Borgi
,
S.
,
Erdogan
,
F.
, and
Hatira
,
F. B.
, 2003, “
Stress Intensity Factors for an Interface Crack Between a Functionally Graded Coating and a Homogeneous Substrate
,”
Int. J. Fract.
0376-9429,
123
, pp.
139
162
.
19.
Erdogan
,
F.
, and
Chiu
,
T. C.
, 2003, “
Plane Strain and Axisymmetric Spallation of Graded Coatings Under Thermal Loading
,”
J. Therm. Stresses
0149-5739,
26
(
6
), pp.
497
523
.
20.
El-Borgi
,
S.
,
Erdogan
,
F.
, and
Hidri
,
L.
, 2004, “
A Partially Insulated Embedded Crack in an Infinite Functionally Graded Medium Under Thermo-Mechanical Loading
,”
Int. J. Eng. Sci.
0020-7225,
42
, pp.
371
393
.
21.
Yildirim
,
B.
, and
Erdogan
,
F.
, 2004, “
Edge Crack Problems in Homogeneous and Functionally Graded Material Thermal Barrier Coatings Under Uniform Thermal Loading
,”
J. Therm. Stresses
0149-5739,
27
(
4
), pp.
311
329
.
22.
Becker
, Jr.,
T. L.
,
Cannon
,
R. M.
, and
Ritchie
,
R. O.
, 2001, “
Finite Crack Kinking and T-Stresses in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
38
(
32–33
), pp.
5545
5563
.
23.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
T-Stress, Mixed-Mode Stress Intensity Factors, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
11–12
), pp.
1463
1494
.
24.
Dag
,
S.
, 2007, “
Mixed-Mode Fracture Analysis of Functionally Graded Materials Under Thermal Stresses: A New Approach Using JK-Integral
,”
J. Therm. Stresses
0149-5739,
30
, pp.
269
296
.
25.
Eischen
,
J. W.
, 1987, “
Fracture of Non-Homogeneous Materials
,”
Int. J. Fract.
0376-9429,
34
(
1
), pp.
3
22
.
26.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Finite Element Evaluation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
8
), pp.
1903
1935
.
27.
Sampath
,
S.
,
Herman
,
H.
,
Shimoda
,
N.
, and
Saito
,
T.
, 1995, “
Thermal Spray Processing of FGMs
,”
MRS Bull.
0883-7694,
20
(
1
), pp.
27
31
.
28.
Hart
,
N. T.
,
Brandon
,
N. P.
,
Day
,
M. J.
, and
Shemilt
,
J. E.
, 2001, “
Functionally Graded Cathodes for Solid Oxide Fuel Cells
,”
J. Mater. Sci.
0022-2461,
36
, pp.
1077
1085
.
29.
Kaysser
,
W. A.
, and
Ilschner
,
B.
, 1995, “
FGM Research Activities in Europe
,”
MRS Bull.
0883-7694,
20
(
1
), pp.
22
26
.
30.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2004, “
T-Stress in Orthotropic Functionally Graded Materials: Lekhnitskii and Stroh Formalisms
,”
Int. J. Fract.
0376-9429,
126
(
4
), pp.
345
389
.
31.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2005, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
351
364
.
32.
Leevers
,
P. S.
, and
Radon
,
J. C. D.
, 1982, “
Inherent Stress Biaxiality in Various Fracture Specimen
,”
Int. J. Fract.
0376-9429,
19
(
4
), pp.
311
325
.
33.
Cardew
,
G. E.
,
Goldthorpe
,
M. R.
,
Howard
,
I. C.
, and
Kfouri
,
A. P.
, 1985, “
On the Elastic T-Term
,”
Fundamentals of Deformation and Fracture: Eshelby Memorial Symposium
.
34.
Kfouri
,
A. P.
, 1986, “
Some Evaluations of the Elastic T-Term Using Eshelby’s Method
,”
Int. J. Fract.
0376-9429,
30
(
4
), pp.
301
315
.
35.
Sladek
,
J.
,
Sladek
,
V.
, and
Fedelinski
,
P.
, 1997, “
Contour Integrals for Mixed-Mode Crack Analysis: Effect of Nonsingular Terms
,”
Theor. Appl. Fract. Mech.
0167-8442,
27
(
2
), pp.
115
127
.
36.
Ayatollahi
,
M. R.
,
Pavier
,
M. J.
, and
Smith
,
D. J.
, 1998, “
Determination of T-Stress From Finite Element Analysis for Mode I and Mixed Mode I∕II Loading
,”
Int. J. Fract.
0376-9429,
91
, pp.
283
298
.
37.
Walters
,
M. C.
, 2007, private Communication.
38.
Chen
,
C. S.
,
Krause
,
R.
,
Pettit
,
R. G.
,
Banks-Sills
,
L.
, and
Ingraffea
,
A. R.
, 2001, “
Numerical Assessment of T-Stress Computation Using a p-Version Finite Element Method
,”
Int. J. Fract.
0376-9429,
107
(
2
), pp.
177
199
.
39.
Dolbow
,
J.
, and
Gosz
,
M.
, 2002, “
On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
39
(
9
), pp.
2557
2574
.
40.
Rao
,
B. N.
, and
Rahman
,
S.
, 2003, “
Mesh-Free Analysis of Cracks in Isotropic Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
70
(
1
), pp.
1
27
.
41.
Walters
,
M. C.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, Jr.
, 2004, “
Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Under Mode I Thermomechanical Loading
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1081
1118
.
42.
Yildirim
,
B.
, 2006, “
An Equivalent Domain Integral Method for Fracture Analysis of Functionally Graded Materials Under Thermal Stresses
,”
J. Therm. Stresses
0149-5739,
29
, pp.
371
397
.
43.
Amit
,
K. C.
, and
Kim
,
J.-H.
, 2008, “
Interaction Integrals for Thermal Fracture of Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
2542
2565
.
44.
Paulino
,
G. H.
, and
Kim
,
J.-H.
, 2004, “
A New Approach to Compute T-Stress in Functionally Graded Materials Using the Interaction Integral Method
,”
Eng. Fract. Mech.
0013-7944,
71
(
13–14
), pp.
1907
1950
.
45.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,”
Eng. Fract. Mech.
0013-7944,
69
(
14–16
), pp.
1557
1586
.
46.
Dag
,
S.
, 2006, “
Thermal Fracture Analysis of Orthotropic Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
2802
2828
.
47.
Sladek
,
J.
,
Sladek
,
V.
,
Zhang
,
Ch.
, and
Tan
,
C. L.
, 2006, “
Evaluation of Fracture Parameters for Crack Problems in FGM by a Meshless Method
,”
J. Theor Appl. Mech.
,
44
, pp.
603
636
.
48.
Ting
,
C. T. C.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
Oxford
.
49.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
,
Gordon and Breach Science
,
New York
.
50.
Rice
,
J. R.
, 1968, “
A Path-Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
(
2
), pp.
379
386
.
51.
Anderson
,
T. L.
, 1995,
Fracture Mechanics: Fundamentals and Applications
,
CRC
,
Boca Raton, FL
.
52.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
, 2001,
Concepts and Applications of Finite Element Analysis
,
4th ed.
,
Wiley
,
New York
.
53.
Wang
,
S. S.
,
Corten
,
H. T.
, and
Yau
,
J. F.
, 1980, “
Mixed-Mode Crack Analysis of Rectilinear Anisotropic Solids Using Conservation Laws of Elasticity
,”
Int. J. Fract.
0376-9429,
16
(
3
), pp.
247
259
.
54.
Wawrzynek
,
P. A.
, 1987, “
Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach
,” M.S. thesis, Cornell University, Ithaca, NY.
55.
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
, 1991, “
Discrete Modeling of Crack Propagation: Theoretical Aspects and Implementation Issues in Two and Three Dimensions
,” School of Civil Engineering and Environmental Engineering, Cornell University, Report No. 91-5.
56.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
(
4
), pp.
502
514
.
57.
Paulino
,
G. H.
, and
Kim
,
J.-H.
, 2004, “
On the Poisson’s Ratio Effect on Mixed-Mode Stress Intensity Factors and T-stress in Functionally Graded Materials
,”
Int. J. Comput. Eng. Sci.
1465-8763,
5
(
4
), pp.
833
861
.
58.
Yildirim
,
B.
,
Dag
,
S.
, and
Erdogan
,
F.
, 2005, “
Three Dimensional Fracture Analysis of FGM Coatings Under Thermomechanical Loading
,”
Int. J. Fract.
0376-9429,
132
, pp.
369
395
.
59.
Paulino
,
G. H.
, and
Dong
,
Z.
, “
A Novel Application of the Singular Integral Equation Approach to Evaluate T-Stress in Functionally Graded Materials
,” unpublished.
60.
Konda
,
N.
, and
Erdogan
,
F.
, 1994, “
The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium
,”
Eng. Fract. Mech.
0013-7944,
47
(
4
), pp.
533
545
.
You do not currently have access to this content.