A parallel domain decomposition boundary integral algorithm for three-dimensional exponentially graded elasticity has been developed. As this subdomain algorithm allows the grading direction to vary in the structure, geometries arising from practical functionally graded material applications can be handled. Moreover, the boundary integral algorithm scales well with the number of processors, also helping to alleviate the high computational cost of evaluating the Green’s functions. For axisymmetric plane strain states in a radially graded material, the numerical results for cylindrical geometries are in excellent agreement with the analytical solution deduced herein.

1.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
, 1999,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer Academic
,
Dordrecht
.
2.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
The Institute of Materials, IOM Communications Ltd.
,
London
.
3.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Finite Element Evaluation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
1903
1935
.
4.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using the Finite Element Method
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1769
1790
.
5.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
502
514
.
6.
Silva
,
E. C. N.
,
Carbonari
,
R. C.
, and
Paulino
,
G. H.
, 2007, “
On Graded Elements for Multiphysics Applications
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
2408
2428
.
7.
Naghdabadi
,
R.
, and
Kordkheili
,
S. A. H.
, 2005, “
A Finite Element Formulation for Analysis of Functionally Graded Plates and Shells
,”
Arch. Appl. Mech.
0939-1533,
74
, pp.
375
386
.
8.
Anlas
,
G.
,
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Fract.
0376-9429,
104
, pp.
131
143
.
9.
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
819
822
.
10.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
0961-9526,
5
, pp.
753
770
.
11.
Konda
,
N.
, and
Erdogan
,
F.
, 1994, “
The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
533
545
.
12.
Lee
,
Y. D.
, and
Erdogan
,
F.
, 1994, “
Residual/Thermal Stresses in FGM and Laminated Thermal Barrier Coatings
,”
Int. J. Fract.
0376-9429,
69
, pp.
145
165
.
13.
Erdogan
,
F.
, and
Bahar
,
L. Y.
, 1964, “
On the Solution of Simultaneous Dual Integral Equations
,”
J. Soc. Ind. Appl. Math.
0368-4245,
12
pp.
666
675
.
14.
Kaya
,
A. C.
, and
Erdogan
,
F.
, 1987, “
On the Solution of Integral Equations With a Generalized Cauchy Kernel
,”
Q. Appl. Math.
0033-569X,
45
, pp.
455
469
.
15.
Kaya
,
A. C.
, and
Erdogan
,
F.
, 1987, “
On the Solution of Integral Equations With Strongly Singular Kernels
,”
Q. Appl. Math.
0033-569X,
45
, pp.
105
122
.
16.
París
,
F.
, and
Cañas
,
J.
, 1997,
Boundary Element Method: Fundamentals and Applications
,
Oxford University Press
,
Oxford
.
17.
Bonnet
,
M.
, 1998,
Boundary Integral Equation Methods for Solids and Fluids
,
Wiley
,
England
.
18.
Aliabadi
,
M. H.
, 2002,
The Boundary Element Method
, Vol.
II
,
Wiley
,
Chichester
.
19.
Chan
,
Y.-S.
,
Gray
,
L. J.
,
Kaplan
,
T.
, and
Paulino
,
G. H.
, 2004, “
Green’s Function for a Two-Dimensional Exponentially Graded Elastic Medium
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
1689
1706
.
20.
Martin
,
P. A.
,
Richardson
,
J. D.
,
Gray
,
L. J.
, and
Berger
,
J.
, 2002, “
On Green’s Function for a Three-Dimensional Exponentially-Graded Elastic Solid
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
1931
1948
.
21.
Criado
,
R.
,
Gray
,
L. J.
,
Mantič
,
V.
, and
París
,
F.
, 2008, “
Green’s Function Evaluation for Three Dimensional Exponentially Graded Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
1560
1591
.
22.
Criado
,
R.
,
Ortiz
,
J. E.
, Mantič, V.,
Gray
,
L. J.
, and
París
,
F.
, 2007, “
Boundary Element Analysis of Three-Dimensional Exponentially Graded Isotropic Elastic Solids
,”
Comput. Model. Eng. Sci.
1526-1492,
22
, pp.
151
164
.
23.
Mantič
,
V.
, 1993, “
A New Formula for the C-Matrix in the Somigliana Identity
,”
J. Elast.
0374-3535,
33
, pp.
191
201
.
24.
Araújo
,
F. C.
,
Silva
,
K. I.
, and
Telles
,
J. C. F.
, 2006, “
Generic Domain Decomposition and Iterative Solvers for 3-D BEM Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
68
, pp.
448
472
.
25.
Araújo
,
F. C.
,
Silva
,
K. I.
, and
Telles
,
J. C. F.
, 2007, “
Application of a Generic Domain-Decomposition Strategy to Solve Shell-Like Problems Through 3D BE Models
,”
Commun. Numer. Methods Eng.
1069-8299,
23
, pp.
771
785
.
26.
Kamiya
,
N.
,
Iwase
,
H.
, and
Kite
,
E.
, 1996, “
Parallel Implementation of Boundary Element Method With Domain Decomposition
,”
Eng. Anal. Boundary Elem.
0955-7997,
18
, pp.
209
216
.
27.
Kamiya
,
N.
,
Iwase
,
H.
, and
Kite
,
E.
, 1996, “
Performance Evaluation of Parallel Boundary Element Analysis by Domain Decomposition Method
,”
Eng. Anal. Boundary Elem.
0955-7997,
18
, pp.
217
222
.
28.
Divo
,
E.
,
Kassab
,
A. J.
, and
Rodriguez
,
F.
, 2003, “
Parallel Domain Decomposition Approach for Large-Scale Three-Dimensional Boundary-Element Models in Linear and Nonlinear Heat Conduction
,”
Numer. Heat Transfer, Part B
1040-7790,
44
, pp.
417
437
.
29.
Ingber
,
M. S.
,
Schmidt
,
C. C.
,
Tanski
,
J. A.
, and
Phillips
,
J.
, 2003, “
Boundary-Element Analysis of 3-D Diffusion Problems Using a Parallel Domain Decomposition Method
,”
Numer. Heat Transfer, Part B
1040-7790,
44
, pp.
145
164
.
30.
Zhang
,
X.
, and
Hasebe
,
N.
, 1999, “
Elasticity Solution for a Radially Nonhomogeneous Hollow Circular Cylinder
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
598
606
.
31.
Maier
,
G.
,
Diligenti
,
M.
, and
Carini
,
A.
, 1991, “
A Variational Approach to Boundary Element Elastodynamic Analysis and Extension to Multidomain Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
92
, pp.
193
213
.
32.
Hölzer
,
S. M.
, 1992, “
The Symmetric Galerkin BEM for Plane Elasticity: Scope and Applications
,”
Numerical Methods in Engineering
,
C.
Hirsch
, ed.,
Elsevier
,
New York
.
33.
Gray
,
L. J.
, and
Paulino
,
G. H.
, 1997, “
Symmetric Galerkin Boundary Integral Formulation for Interface and Multi-Zone Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
3085
3101
.
34.
Blázquez
,
A.
,
París
,
F.
, and
Mantič
,
V.
, 1998, “
BEM Solution of Two Dimensional Contact Problems by Weak Application of Contact Conditions With Non-Conforming Discretizations
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
3259
3278
.
35.
Li
,
X. S.
, 2005, “
An Overview of SuperLU: Algorithms, Implementation, and User Interface
,”
ACM Trans. Math. Softw.
0098-3500,
31
, pp.
302
325
.
36.
Saad
,
Y.
, 2003,
Iterative Methods for Sparse Linear Systems
,
2nd ed.
,
SIAM
,
Philadelphia
.
37.
Barber
,
J. R.
, 1992,
Elasticity
,
Kluwer Academic
,
Dordrecht
.
38.
Wacker
,
G.
,
Bledzki
,
A. K.
, and
Chate
,
A.
, 1998, “
Effect of Interphase on the Transverse Young’s Modulus of Glass/Epoxy Composites
,”
Composites, Part A
1359-835X,
29A
, pp.
619
626
.
39.
Jasiuk
,
I.
, and
Kouider
,
M. W.
, 1993, “
The Effect of an Inhomogeneous Interphase on the Elastic Constants of Transversely Isotropic Composites
,”
Mech. Mater.
0167-6636,
15
, pp.
53
63
.
40.
Liu
,
Y.
, and
Xu
,
N.
, 2000, “
Modeling of Interphase Cracks in Fiber-Reinforced Composites With the Presence of Interphases Using the Boundary Element Method
,”
Mech. Mater.
0167-6636,
32
, pp.
769
783
.
41.
Luo
,
J. F.
,
Liu
,
Y.
, and
Berger
,
E. J.
, 2000, “
Interfacial Stress Analysis for Multi-Coating Systems Using an Advanced Boundary Element Method
,”
Comput. Mech.
0178-7675,
24
, pp.
448
455
.
42.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1972,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Dover
,
New York
.
You do not currently have access to this content.