Aeroelastic flutter can lead to large amplitude oscillations of tensioned wide webs and narrow ribbons commonly used in the paper-handling, textile, sheet-metal, and plastics industries. In this article, we examine the aeroelastic stability of a web or a ribbon, which is submerged in an incompressible and inviscid fluid flow across its free edges. The web or ribbon is modeled as a uniaxially tensioned Kirchhoff plate with vanishingly small bending stiffness. A Galerkin discretization for the structural dynamics together with panel methods for the unsteady three dimensional potential flow are used to cast the coupled system into the form of a gyroscopic, nonconservative dynamical system. It is found that wide webs mainly destabilize through a divergence instability due to the cross-flow-induced conservative centrifugal effects. However, for certain values of applied tension, the wake-induced nonconservative effects can destabilize the web via a weak flutter instability. Contrarily, narrow ribbons in cross flow are nearly equally likely to undergo flutter or divergence instability depending on the value of applied tension.

1.
Dowell
,
E. H.
, 1966, “
Nonlinear Oscillations of a Fluttering Plate
,”
AIAA J.
0001-1452,
4
(
7
), pp.
1267
1275
.
2.
Raman
,
A.
,
Wolf
,
K.
, and
Hagedorn
,
P.
, 2001, “
Observations on the Vibrations of Paper Webs
,”
Proceedings of the International Conference on Web Handling
,
Stillwater, OK
.
3.
Hill
,
K. C.
, 1988, “
Dryer Sheet Stability for Older Paper Machines
,”
Tappi J.
0734-1415,
71
, pp.
55
59
.
4.
Watanabe
,
Y.
,
Suzuki
,
S.
,
Sugihara
,
M.
, and
Sueoka
,
Y.
, 2002, “
An Experimental Study of Paper Flutter
,”
J. Fluids Struct.
0889-9746,
16
(
4
), pp.
529
542
.
5.
Dowell
,
E. H.
, 1975,
Aeroelasticity of Plates and Shells
,
Noordhoff
,
Leyden
.
6.
Paidoussis
,
M. P.
, 2004,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
2
,
Elsevier Academic
,
London
.
7.
Guo
,
C. Q.
, and
Paidoussis
,
M. P.
, 2000, “
Stability of Rectangular Plates With Free Side-Edges in Two Dimensional Inviscid Channel Flow
,”
ASME J. Appl. Mech.
0021-8936,
67
(
1
), pp.
171
176
.
8.
Tang
,
D. M.
,
Yamamoto
,
H.
, and
Dowell
,
E. H.
, 2003, “
Flutter and Limit Cycle Oscillations of Two-Dimensional Panels in Three-Dimensional Axial Flow
,”
J. Fluids Struct.
0889-9746,
17
, pp.
225
242
.
9.
Niemi
,
J.
, and
Pramila
,
A.
, 1987, “
FEM-Analysis of Transverse Vibrations of an Axially Moving Membrane Immersed in Ideal Fluid
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
12
), pp.
2301
2313
.
10.
Frondelius
,
T.
,
Koivurova
,
H.
, and
Pramila
,
A.
, 2006, “
Interaction of an Axially Moving Band and Surrounding Fluid by Boundary Layer Theory
,”
J. Fluids Struct.
0889-9746,
22
(
8
), pp.
1047
1056
.
11.
Chang
,
Y. B.
, and
Moretti
,
P. M.
, 2002, “
Flow-Induced Vibration of Free Edges of Thin Films
,”
J. Fluids Struct.
0889-9746,
16
(
7
), pp.
989
1008
.
12.
Watanabe
,
Y.
,
Isogai
,
K.
,
Suzuki
,
S.
, and
Sugihara
,
M.
, 2002, “
A Theoretical Study of Paper Flutter
,”
J. Fluids Struct.
0889-9746,
16
(
4
), pp.
543
560
.
13.
Chang
,
Y. B.
, and
Moretti
,
P. M.
, 1992, “
An Experimental Study on Edge Flutter in Webs
,”
Web Handling
,
J. K.
Good
, ed.,
American Society of Mechanical Engineers
,
New York
, Vol.
AMD-149
, pp.
67
78
.
14.
Chang
,
Y. B.
,
Cho
,
H. C.
, and
Moretti
,
P. M.
, 1999, “
Edge Flutter
,”
Noise Control and Acoustics Division Proceedings of the ASME
, Vol.
26
, pp.
413
423
.
15.
Vaughan
,
M.
, and
Raman
,
A.
, “
Aeroelastic Stability of Axially Moving Webs Coupled to Incompressible Flows
,”
ASME J. Appl. Mech.
0021-8936, in press.
16.
Bassanini
,
P.
,
Casciola
,
C. M.
,
Lancia
,
M. R.
, and
Piva
,
R.
, 1996, “
On the Trailing Edge Singularity and Kutta Condition for 3D Airfoils
,”
Eur. J. Mech. B/Fluids
0997-7546,
15
(
6
), pp.
809
830
.
17.
VanDyke
,
M. D.
, 1956, “
Second-Order Subsonic Airfoil Theory Including Edge Effects
,” NACA Report No. 1274.
18.
Katz
,
J.
, and
Plotkin
,
A.
, 2001,
Low Speed Aerodynamics
,
2nd ed.
,
Cambridge University Press
,
New York
.
19.
Turnbull
,
P. F.
,
Perkins
,
N. C.
, and
Schultz
,
W. W.
, 1995, “
Contact-Induced Nonlinearity in Oscillating Belts and Webs
,”
J. Vib. Control
1077-5463,
1
, pp.
459
479
.
20.
Hassig
,
H. J.
, 1971, “
An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration
,”
J. Aircr.
0021-8669,
8
(
11
), pp.
885
889
.
21.
Rodden
,
W. P.
,
Harder
,
R. L.
, and
Bellinger
,
E. D.
, 1979, “
Aeroelastic Addition to NASTRAN
,” NASA Contractor Report No. 3094.
22.
Theodorson
,
T.
, 1935, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” NACA Report No. 496.
23.
Von Kármán
,
T.
, and
Sears
,
W. R.
, 1938, “
Airfoil Theory for Non-Uniform Motion
,”
J. Aeronaut. Sci.
0095-9812,
5
(
10
), pp.
379
390
.
24.
Lawrence
,
H. R.
, and
Gerber
,
E. H.
, 1952, “
The Aerodynamic Forces on Low Aspect Ratio Wings Oscillating in an Incompressible Flow
,”
J. Aeronaut. Sci.
0095-9812,
19
, pp.
769
781
.
25.
Crighton
,
D. G.
, 1985, “
The Kutta Condition in Unsteady Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
17
, pp.
411
445
.
26.
Perkins
,
N. C.
, and
Mote
, Jr.,
C. D.
, 1986, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
0022-460X,
106
(
3
), pp.
451
463
.
27.
Argentina
,
M.
, and
Mahadevan
,
L.
, 2005, “
Fluid-Flow-Induced Flutter of a Flag
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
6
), pp.
1829
1834
.
28.
Paidoussis
,
M. P.
, 1973, “
Dynamics of Cylindrical Structures Subjected to Axial Flow
,”
J. Sound Vib.
0022-460X,
29
(
3
), pp.
365
385
.
29.
Vaughan
,
M.
, 2003, “
Aeroelastic Stability of Axial Moving Webs Coupled to Incompressible Flows
,” Master's thesis, Purdue University, West Lafayette, IN.
You do not currently have access to this content.