In 1970, F. Y. M. Wan derived a single, complex-valued ordinary differential equation for an elastically isotropic right circular conical shell (“On the Equations of the Linear Theory of Elastic Conical Shells,” Studies Appl. Math., 49, pp. 69–83). The unknown was the nth Fourier component of a complex combination of the midsurface normal displacement and its static-geometric dual, a stress function. However, an attempt to formally replace the Fourier index n by a partial derivative in the circumferential angle θ results in a partial differential equation, which is eighth order in θ. The present paper takes as unknowns the traces of the bending strain and stress resultant tensors, respectively, and derives static-geometric dual partial differential equations of fourth order in both the axial and circumferential variables. Because of the explicit appearance of Poisson ratios of bending and stretching, these two equations cannot be combined into a single complex-valued equation. Reduced equations for beamlike (axisymmetric and lateral) deformations are also derived.

1.
Goldenveiser
,
A. L.
, 1957, “
Equations of the Theory of Shells in Displacements and Stress Functions
Prikladnaia Mathematika i Mekhanika
,
21
, pp.
801
814
, in Russian.
2.
Koiter
,
W. T.
, 1963, “
A Spherical Shell Under Point Loads at Its Poles
,”
Progress in Applied Mechanics (The Prager Anniversary Volume)
,
Macmillan
,
New York
.
3.
Simmonds
,
J. G.
, 1966, “
A Set of Simple, Accurate Equations for Circular Cylindrical Elastic Shells
,”
Int. J. Solids Struct.
0020-7683,
2
, pp.
525
541
.
4.
Sanders
,
J. L.
, Jr.
, 1983, “
Analysis of Circular Cylindrical Shells
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
1165
1170
.
5.
Sanders
,
J. L.
, Jr.
, 1969, “
On the Shell Equations in Complex Form
,”
Theory of Thin Shells, IUTAM Symposium Copenhagen, 1967
,
F. I.
Niordson
, ed.,
Springer-Verlag
,
Berlin
, pp.
135
156
.
6.
Sanders
,
J. L.
, Jr.
, 1959, “
An Improved First-Approximation Theory for Thin Shells
,” NASA Report No. 24.
7.
Koiter
,
W. T.
, 1960, “
A Consistent First Approximation in the General Theory of Thin Elastic Shells
,”
Theory of Thin Elastic Shells
,
Proceedings IUTAM Symposium
, Delft, 1959,
W. T.
Koiter
, ed.,
North-Holland
,
Amsterdam
, pp.
12
33
.
8.
Cohen
,
J. W.
, 1960, “
The Inadequacy of the Classical Stress-Strain Relations for the Right Helicoidal Shell
,”
Theory of Thin Elastic Shells
,
Proceedings IUTAM Symposium
, Delft, 1959,
W. T.
Koiter
, ed.,
North-Holland
,
Amsterdam
, pp.
415
433
.
9.
Latta
,
G. E.
, and
Simmonds
,
J. G.
, 1975, “
The Sanders–Koiter Shell Equations can be Reduced to Two Coupled Equations for All Minimal Midsurfaces
,”
Q. Appl. Math.
0033-569X,
33
, pp.
170
174
.
10.
Novozhilov
,
V. V.
, 1970,
Thin Shell Theory
,
2nd ed.
,
Wolters-Noordhoff
,
Groningen
.
11.
Simmonds
,
J. G.
, 2007, “
The Hypercircle Theorem for Elastic Shells and the Accuracy of Novozhilov’s Simplified Equations for General Cylindrical shells
,”
Discrete Contin. Dyn. Syst., Ser. B
1531-3492,
7
, pp.
643
650
.
12.
Wan
,
F. Y. M.
, 1970, “
On the Equations of the Linear Theory of Elastic Conical Shells
,”
Stud. Appl. Math.
0022-2526,
49
, pp.
69
83
.
13.
Budiansky
,
B.
, and
Sanders
,
J. L.
, 1963, “
On the ‘Best’ First-Order Linear Shell Theory
,”
Progress in Applied Mechanics (The Prager Anniversary Volume)
,
Macmillan
,
New York
, pp.
129
140
.
14.
Niordson
,
F. I.
, 1971, “
A Note on the Strain Energy of Elastic Shells
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
1573
1579
.
15.
Libai
,
A.
, and
Simmonds
,
J. G.
, 1979, “
Exact Equations for the Inextensional Deformation of Cantilevered Plates
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
631
636
.
16.
Struik
,
D. J.
, 1961,
Differential Geometry
,
2nd ed.
,
Addison-Wesley
,
Reading MA
.
17.
Hildebrand
,
F.
, 1976,
Advanced Calculus for Applications
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Abramowitz
,
M.
, and
Stegun
,
I.
, 1964,
Handbook of Mathematical Functions
,
U.S. Government Printing Office
,
Washington, DC
.
19.
Erdélyi
,
A.
, 1956,
Asymptotic Expansions
,
Dover
,
New York
.
20.
Pietraszkiewicz
,
W.
, and
Szwabowicz
,
M. L.
, 2007, “
Determination of the Midsurface of a Deformed Shell From Prescribed Fields of Surface Strains and Bendings
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
6163
6172
.
You do not currently have access to this content.