This paper aims at experimentally investigating the dynamical behaviors when a system of rigid bodies undergoes so-called paradoxical situations. An experimental setup corresponding to the analytical model presented in our prior work Liu et al. [2007, “The Bouncing Motion Appearing in a Robotic System With Unilateral Constraint,” Nonlinear Dyn., 49(1–2), 217–232] is developed, in which a two-link robotic system comes into contact with a moving rail. The experimental results show that a tangential impact exists at the contact point and takes a peculiar property that well coincides with the maximum dissipation principle stated in the work of Moreau [1988, “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,” Nonsmooth Mechanics and Applications, Springer-Verlag, Vienna, pp. 1–82] the relative tangential velocity of the contact point must immediately approach zero once a Painlevé paradox occurs. After the tangential impact, a bouncing motion may be excited and is influenced by the speed of the moving rail. We adopt the tangential impact rule presented by Liu et al. to determine the postimpact velocities of the system, and use an event-driven algorithm to perform numerical simulations. The qualitative comparisons between the numerical and experimental results are carried out and show good agreements. This study not only presents an experimental support for the shock assumption related to the problem of the Painlevé paradox, but can also find its applications in better understanding the instability phenomena appearing in robotic systems.

1.
Hurmuzlu
,
Y.
,
Génot
,
F.
, and
Brogliato
,
B.
, 2004, “
Modeling, Stability and Control of Biped Robots A General Framework
,”
Automatica
0005-1098,
40
, pp.
1647
1664
.
2.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 1996,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
3.
Stronge
,
W. J.
, 2000,
Impact Mechanics
,
Cambridge University Press
,
Cambridge
.
4.
Brogliato
,
B.
, 2003, “
Some Perspectives on the Analysis and Control of Complementarity Systems
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
6
), pp.
918
935
.
5.
Brogliato
,
B.
, 1999,
Nonsmooth Mechanics
,
2nd ed.
,
Springer
,
London
.
6.
Painlevé
,
P.
, 1895, “
Sur les Lois du Ffrottement de Glissement
,”
C. R. Hebd. Seances Acad. Sci.
0001-4036,
121
, pp.
112
115
.
7.
Klein
,
F.
, 1909, “
Zu Painlevés Kritik der Coulombschen Reibungsgesetze
,”
Zeit. Math. Physik
,
58
, pp.
186
191
.
8.
Lötstedt
,
P.
, 1981, “
Coulomb Friction in Two-Dimensional Rigid-Body Systems
,”
Z. Angew. Math. Mech.
0044-2267,
61
, pp.
605
615
.
9.
Lötstedt
,
P.
, 1982, “
Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints
,”
SIAM J. Appl. Math.
0036-1399,
42
, pp.
281
296
.
10.
Erdmann
,
M.
, 1994, “
On a Representation of Friction in Conguration Space
,”
Int. J. Robot. Res.
0278-3649,
13
(
3
), pp.
240
271
.
11.
Moreau
,
J. J.
, 1988, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications
,
Springer-Verlag
,
Vienna
, pp.
1
82
.
12.
Wang
,
Y.
, and
Mason
,
M. T.
, 1992, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
J. Appl. Mech.
0021-8936,
59
, pp.
635
642
.
13.
Baraff
,
D.
, 1991, “
Coping With Friction for Non-Penetrating Rigid Body Simulation
,”
Comput. Graph.
0097-8930,
25
(
4
), pp.
31
40
.
14.
Payr
,
M.
, and
Glocker
,
C.
, 2005, “
Oblique Frictional Impact of a Bar, Analysis and Comparison of Different Impact Laws
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
361
383
.
15.
Leine
,
R. I.
,
Brogliato
,
B.
, and
Nijmeijer
,
H.
, 2002, “
Periodic Motion and Bifurcations Induced by the Painlevé Paradox
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
869
896
.
16.
Génot
,
F.
, and
Brogliato
,
B.
, 1999, “
New Results on Painlevé Paradoxes
,”
Eur. J. Mech. A/Solids
0997-7538,
18
, pp.
653
677
.
17.
Ivanov
,
A. P.
, 1997, “
The Problem of Constrainted Impact
,”
J. Appl. Math. Mech.
0021-8928,
61
(
3
), pp.
341
253
.
18.
Ivanov
,
A. P.
, 2003, “
Singularities in the Dynamics of Systems With Non-Ideal Constraints
,”
J. Appl. Math. Mech.
0021-8928,
67
, pp.
185
192
.
19.
Brach
,
R. M.
, 1997, “
Impact Coefficients and Tangential Impacts
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
64
, pp.
1014
1016
.
20.
Zhao
,
Z.
,
Chen
,
B.
, and
Liu
,
C.
, 2004, “
Impact Model Resolution on Painlevé’s Paradox
,”
Acta Mech. Sin.
0459-1879,
20
(
6
), pp.
659
660
.
21.
Zhao
,
Z.
,
Liu
,
C.
, and
Chen
,
B.
, 2006, “
The Numerical Method for Three-Dimensional Impact With Friction of Multi-Rigid-Body System
,”
Sci. China, Ser. G
1672-1799,
49
(
1
), pp.
102
118
.
22.
Peng
,
S.
,
Kraus
,
P.
,
Kumar
,
V.
, and
Dupont
,
P.
, 2001, “
Analysis of Rigid-Body Dynamic Models for Simulation of Systems With Frictional Contacts
,”
J. Appl. Mech.
0021-8936,
68
, pp.
118
128
.
23.
Grigoryan
,
S. S.
, 2001, “
The Solution to the Painlevé Paradox for Dry Friction
,”
Dokl. Phys.
1028-3358,
46
(
7
), pp.
499
503
.
24.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
(
1
), pp.
3
39
.
25.
Stewart
,
D. E.
, 1998, “
Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painleve’s Problem
,”
Arch. Ration. Mech. Anal.
0003-9527,
145
, pp.
215
260
.
26.
Wilms
,
E. V.
, and
Cohen
,
H.
, 1997, “
The Occurrence of Painlevé’s Paradox in the Motion of a Rotating Shaft
,”
J. Appl. Mech.
0021-8936,
64
, pp.
1008
1010
.
27.
Ibrahim
,
R. A.
, 1994, “
Friction-Induced Vibration, Chatter, Sequeal and Chaos. Part ii, Dynamics and Modeling
,”
Appl. Mech. Rev.
0003-6900,
47
(
7
), pp.
227
253
.
28.
Liu
,
C.
,
Zhao
,
Z.
, and
Chen
,
B.
, 2007, “
The Bouncing Motion Appearing in a Robotic System With Unilateral Constraint
,”
Nonlinear Dyn.
0924-090X,
49
(
1–2
), pp.
217
232
.
29.
Zhao
,
Z.
,
Liu
,
C.
, and
Chen
,
B.
, 2008, “
The Painlevé Paradox Studied at a 3D Slender Rod
,”
Multibody Syst. Dyn.
1384-5640,
19
(
4
), pp.
323
343
.
30.
Anitescu
,
M.
, and
Potra
,
F. A.
, 2002, “
Time-Stepping Schemes for Stiff Multi-Rigid-Body Dynamics With Contact and Friction
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
(
7
), pp.
753
784
.
31.
Anitescu
,
M.
,
Potra
,
F. A.
, and
Stewart
,
D.
, 1999, “
Time-Stepping for Three-Dimensional Rigid-Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
177
, pp.
183
197
.
32.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
33.
Stronge
,
W. J.
, 1994, “
Swerve During Three-Dimensional Impact of Rough Rigid Bodies
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
61
, pp.
605
611
.
34.
Keller
,
J. B.
, 1986, “
Impact With Friction
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
53
, pp.
1
4
.
35.
Bhatt
,
V.
, and
Koechling
,
J.
, 1995, “
Partitioning the Parameter Space According to Different Behaviors During Three-Dimensional Impacts
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
62
, pp.
740
746
.
36.
Batlle
,
J. A.
, 1996, “
Rough Balanced Collisions
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
63
, pp.
168
172
.
37.
Darboux
,
G.
, 1880, “
Etude Géométrique sur les Percussions et le Choc des Corps
,”
Bulletin des Sciences Mathématiques et Astronomiques, deuxième série
,
4
, pp.
126
160
.
38.
Moreau
,
J. J.
, 1963, “
Les Liaisons Unilatérales rt le Principe de Gauss
,”
Acad. Sci., Paris, C. R.
0001-4036,
256
, pp.
871
874
.
39.
Moreau
,
J. J.
, 1971,
Mécanique Classique
,
Masson
,
Paris
, Tome II.
40.
Brogliato
,
B.
,
ten Dam
,
A. A.
,
Paoli
,
L.
,
Génot
,
F.
, and
Abadie
,
M.
, 2002, “
Numerical Simulation of Finite Dimensional Multibody Nonsmooth Dynamical Systems
,”
Appl. Mech. Rev.
0003-6900,
55
(
2
), pp.
107
150
.
You do not currently have access to this content.