In this study, the vibration tailoring problem is analytically solved for the polar orthotropic circular plate with translational spring along its circumference. By using the semi-inverse method and postulating the mode shape as a polynomial, we derive a closed-form solution.
Issue Section:
Technical Briefs
1.
Leissa
, W.
, 1969, “Vibrations of Plates
,” NASA No. SP 160.2.
Gupta
, U. S.
, Lal
, R.
, and Jain
, S. K.
, 1991, “Buckling and Vibrations of Polar Orthotropic Circular Plates of Linearly Varying Thickness Resting on an Elastic Foundation
,” J. Sound Vib.
0022-460X, 147
, pp. 423
–434
.3.
Chen
, D. Y.
, 1997, “Axisymmetric Vibration of Circular and Annular Plates With Arbitrary Varying Thickness
,” J. Sound Vib.
0022-460X, 206
, pp. 114
–121
.4.
Gupta
, U. S.
, and Ansari
, A. H.
, 1997, “Asymmetric Vibrations of Polar Orthotropic Circular Plates of Parabolically Varying Profile With Restrained Elastic Edge
,” Indian J. Pure Appl. Math.
0019-5588, 28
(11
), pp. 1513
–1534
.5.
Luisoni
, L. E.
, and Laura
, P. A. A.
, 1981, “Vibrations of Rectangularly Orthotropic, Circular Plates With Edges Elastically Restrained Against Rotation
,” Fiber Sci. Technology
, 15
, pp. 1
–11
.6.
Narita
, Y.
, and Leissa
, A. W.
, 1981, “Flexural Vibrations of Free Circular Plates Elastically Constrained Along Parts of the Edge
,” Int. J. Solids Struct.
0020-7683, 17
, pp. 83
–92
.7.
Avalos
, D. R.
, and Laura
, P. A. A.
, 1981, “Transverse Vibrations of Polar Orthotropic, Annular Plates Elastically Restrained Against Rotation Along the Edges
,” Fiber Sci. Technology
, 14
, pp. 59
–67
.8.
Elishakoff
, I.
, 1987, “Adjustable Parameter Method for Vibration of Polar Orthotropic Plates
,” J. Sound Vib.
0022-460X, 116
(1
), pp. 181
–184
.9.
Gunaratnam
, D. J.
, and Bhattacharya
, A. P.
, 1989, “Transverse Vibrations and Stability of Polar Orthotropic Circular Plates: High-Level Relationships
,” J. Sound Vib.
0022-460X, 132
(3
), pp. 383
–392
.10.
Elishakoff
, I.
, and Meyer
, D.
, 2005, “Inverse Vibration Problem for Inhomogeneous Circular Plate With Translational Spring
,” J. Sound Vib.
0022-460X, 285
, pp. 1192
–1202
.11.
Pardoen
, G. C.
, 1974, “Vibrations and Buckling Analysis of Axisymmetric Polar Orthotropic Circular Plates
,” Comput. Struct.
0045-7949, 4
(5
), pp. 951
–960
.12.
Glukharev
, K. K.
, Rosenberg
, D. E.
, and Frolov
, K. B.
, 1975, “An Inverse Problem of Dynamics in Connection With System Identification. Method of Dynamic Simulation
,” VII Internationale Konferenz über Nichtlineare Schwingungen, Band II
, Akademic
, Berlin
, Vol. 1
, pp. 331
–345
.13.
Bertrand
, M. J.
, 1873, “Theoreme Relatif au Movement d’un Point Attire Verse un Centre Fixe
,” Compt. Rend.
0001-4036, 77
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.