In order to adequately simulate the behavior of a Hall–Héroult electrolysis cell, a finite element model must take into account the properties of each material forming the cell structure and those contained in it. However, there is some lack of full knowledge of the mechanical behavior of these materials, e.g., the long term viscoelastic (creep/relaxation) behavior of the carbon cathode. In this present paper, a three-dimensional viscoelastic model is devised and proposed, being ready to be implemented in a finite element code. This 3D viscoelastic model was developed from the thermodynamics of irreversible processes, where the selection of the model’s internal variables was based on a phenomenological approach. The model has been developed at a particular reference state; therefore, the model parameters are represented by constant constitutive tensors. The model’s particular parameters were identified for three different types of cathode carbon, i.e., semigraphitic, graphitic, and graphitized.

1.
Grjotheim
,
K.
, and
Kvande
,
H.
, 1993,
Introduction to Aluminium Electrolysis
,
2nd ed.
,
Aluminium-Verlag GmbH
,
Düsseldorf, Germany
.
2.
Sørlie
,
M.
, and
Øye
,
H. A.
, 1994,
Cathode in Aluminium Electrolysis
,
2nd ed.
,
Aluminium-Verlag GmbH
,
Düsseldorf, Germany
, pp.
204
279
.
3.
D’Amours
,
G.
, 2004, “
Développement de lois constitutives thermomécaniques pour les matériaux à base de carbone lors du préchauffage d’une cuve d’électrolyse
,” Ph.D. thesis, Laval University, Quebec.
4.
D’Amours
,
G.
,
Fafard
,
M.
,
Gakwaya
,
A.
, and
Mirchi
,
A.
, 2003, “
Mechanical Behavior of the Carbon Cathode: Understanding, Modeling and Identification
,”
Light Metals 2003: Proceedings of the 132nd TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Diego, CA
, pp.
633
639
.
5.
Goulet
,
P.
, 2004, “
Modélisation du comportement thermo-électro-mécanique des interfaces de contact d’une cuve de Hall–Héroult
,” Ph.D. thesis, Laval University, Quebec.
6.
Richard
,
D.
, 2004, “
Aspects thermomécaniques de la modélisation par éléments finis du préchauffage électrique d’une cuve de Hall–Héroult: lois constitutives, conception orientée-objet et validation
,” Ph.D. thesis, Laval University, Quebec.
7.
Richard
,
D.
,
D’Amours
,
G.
,
Fafard
,
M.
,
Gakwaya
,
A.
, and
Désilets
,
M.
, 2005, “
Development and Validation of a Thermo-Mechanical Model of the Baking of Ramming Paste
,”
Light Metals 2005: Proceedings of the 134th TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Francisco, CA
, pp.
733
738
.
8.
Désilets
,
M.
,
Marceau
,
D.
, and
Fafard
,
M.
, 2003, “
START-Cuve: Thermo-Electro-Mechanical Transient Simulation Applied to Electrical Preheating of a Hall–Héroult Cell
,”
Light Metals 2003: Proceedings of the 132nd TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Diego, CA
, pp.
247
254
.
9.
Durand
,
F.
,
Rouby
,
D.
,
Fantozzi
,
G.
,
Allard
,
B.
, and
Dumas
,
D.
, 1994, “
Characterization of the High-Temperature Mechanical Behavior of Carbon Materials
,”
Chem. Eng. Sci.
0009-2509,
32
(
5
),: pp.
857
865
.
10.
Mirtchi
,
A. A.
, 1995, “
Characterization of Vibrated and Extruded Cathode Blocks
,”
Light Metals 1995: Proceedings of the 124th TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
Las Vegas, NV
, pp.
775
781
.
11.
Mirchi
,
A. A.
,
Chen
,
W.
, and
Tremblay
,
M.
, 2003, “
Comparative Characterisation of Graphitized and Graphitic Cathode Blocks
,”
Light Metals 2003: Proceedings of the 132nd TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Diego, CA
, pp.
617
624
.
12.
Mirtchi
,
A. A.
,
Fortin
,
C.
, and
Tremblay
,
M.
, 1999, “
Three-Directional Characterization of Vibrated and Extruded Cathode Blocks
,”
METSOC: Light Metals 1999
,
Canadian Institute of Mining, Metallurgy and Petroleum (CIM)
.
13.
Dreyfus
,
J.-M.
,
Allard
,
B.
, and
Lenclud
,
M.
, 1999, “
Cathode Blocks for Aluminium Reduction Cell: Electrical, Thermal And Mechanical Property Evolution With Temperature
,”
METSOC: Light Metals 1999
,
Canadian Institute of Mining, Metallurgy and Petroleum (CIM)
, pp.
151
164
.
14.
Liao
,
X.-a.
, and
Øye
,
H. A.
, 1998, “
Increased Sodium Expansion in Cryolite-Based Alumina Slurries
,”
Light Metals 1998. Proceedings of the 127th TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Antonio, TX
, pp.
659
666
.
15.
Zolochevsky
,
A.
,
Hop
,
J. G.
,
Foosnaes
,
T.
, and
Øye
,
H. A.
, 2005, “
Surface Exchange of Sodium, Anisotropy of Diffusion and Diffusional Creep in Carbon Cathode Materials
,”
Light Metals 2005: Proceedings of the 134th TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Francisco, CA
, pp.
745
750
.
16.
Brisson
,
P.-Y.
, 2005, “
Étude des phénomènes de pénétration des espèces chimiques dans les revêtements cathodiques des cuves d’électrolyse de l’aluminium
,” Ph.D. thesis, Sherbrooke University, Sherbrooke.
17.
Brisson
,
P.-Y.
,
Soucy
,
G.
,
Fafard
,
M.
,
Darmstadt
,
H.
, and
Servant
,
G.
, 2005, “
Revisiting Sodium and Bath Penetration in the Carbon Lining of Aluminium Electrolysis Cell
,”
Light Metals 2005: Proceedings of the 134th TMS Annual Meeting
,
The Minerals, Metals and Materials Society
,
San Francisco, CA
, pp.
727
732
.
18.
Brisson
,
P.-Y.
,
Soucy
,
G.
,
Fafard
,
M.
, and
Dionne
,
M.
, 2005, “
The Effect of Sodium on the Carbon Lining of the Aluminium Electrolysis Cell—A. Review
,”
Can. Metall. Q.
0008-4433,
44
(
2
), pp.
265
280
.
19.
Hop
,
J. G.
, 2003, “
Sodium Expansion and Creep of Cathode Carbon
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim.
20.
Zolochevsky
,
A.
,
Hop
,
J. G.
,
Servant
,
G.
,
Foosnaes
,
T.
, and
Øye
,
H. A.
, 2003, “
Rapoport–Samoilenko Test for Cathode Carbon Materials I. Experimental Results and Constitutive Modelling
,”
Carbon
0008-6223,
41
(
3
), pp.
497
505
.
21.
Fafard
,
M.
,
Boudjelal
,
M. T.
,
Bissonnette
,
B.
, and
Cloutier
,
A.
, 2001, “
Three-Dimensional Viscoelastic Model With Nonconstant Coefficients
,”
J. Eng. Mech.
0733-9399,
127
(
8
), pp.
808
815
.
22.
Schapery
,
R. A.
, 1997, “
Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics
,”
Mech. Time-Depend. Mater.
1385-2000,
1
, pp.
209
240
.
23.
Bažant
,
Z.
,
Hauggaard
,
A.
,
Baweja
,
S.
, and
Ulm
,
F.-J.
, 1997, “
Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects
,”
J. Eng. Mech.
0733-9399,
123
(
11
), pp.
1188
1194
.
24.
Benboudjema
,
F.
,
Meftah
,
F.
,
Sellier
,
A.
, and
Torrenti
,
J.
, 2000, “
A Basic Creep Model for Concrete Subjected to Multiaxial Loads
,”
14th Engineering Mechanics Conference
,
Department of Civil Engineering, The University of Texas of Austin
,
Austin, TX
, May.
25.
Dergunov
,
N.
,
Krotov
,
A.
,
Barabanov
,
V.
, and
Anufriev
,
U.
, 1972, “
Tensile and Creep Behavior of Polycrystalline Graphites
,”
Carbon
0008-6223,
10
, pp.
19
27
.
26.
Zukas
,
E.
, and
Green
,
W.
, 1972, “
High Temperature Creep of a POCO Graphite
,”
Carbon
0008-6223,
10
, pp.
519
524
.
27.
Green
,
W. V.
,
Weertman
,
J.
, and
Zukas
,
E. G.
, 1970, “
High-Temperature Creep of Polycrystalline Graphite
,”
Mater. Sci. Eng.
0025-5416,
6
, pp.
199
211
.
28.
Picard
,
D.
, 2007, “
Modélisation et caractérisation du fluage/relaxation de matériaux à base de carbone présents dans les revêtements cathodiques des cuves d’électrolyse de l’aluminium
,” Ph.D. thesis, Laval University, Quebec.
29.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer-Verlag
,
New York
.
30.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
, 1994,
Mechanics of Solid Materials
, new ed,
Cambridge University Press
,
Cambridge
, pp.
582
.
31.
Gurtin
,
M. E.
, and
Sternberg
,
E.
, 1962, “
On the Linear Theory of Viscoelasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
11
(
1
), pp.
291
356
.
32.
Richard
,
D.
,
Fafard
,
M.
, and
Désilets
,
M.
, 2003, “
Thermo-Chemo-Mechanical Aspects of Refractory Concrete Used in a Hall–Héroult Cell
,”
Light Metals 2003: Proceedings of the 132nd TMS Annual Meetings
,
The Minerals, Metals and Materials Society
,
San Diego, CA
, pp.
283
290
.
33.
Ioka
,
I.
,
Yoda
,
S.
, and
Konishi
,
T.
, 1990, “
Behavior of Acoustic Emission Caused by Microfracture in Polycrystalline Graphites
,”
Carbon
0008-6223,
28
(
6
), pp.
879
885
.
34.
Narisawa
,
M.
,
Adachi
,
M.
, and
Souma
,
I.
, 1994, “
High-Temperature Creep and Resultant Anisotropy in Ultrasonic Velocity in Isotropic Graphite
,”
J. Mater. Sci.
0022-2461,
29
, pp.
708
713
.
35.
Neighbour
,
B. G.
, and
McEnaney
,
B.
, 1994 “
Creep and Recovery in Graphites at Ambient Temperature: An Acoustic Emission Study
,”
Carbon
0008-6223,
32
(
4
), pp.
553
558
.
36.
Neighbour
,
B. G.
,
McEnaney
,
B.
, and
Phillips
,
M.
, 1992, “
Acoustic Emission Responses From Cyclic Loading of Nuclear Graphite
,”
Carbon
0008-6223,
30
(
3
), pp.
359
363
.
37.
Pickup
,
I.
,
McEnaney
,
B.
, and
Cooke
,
R.
, 1986, “
Fracture Processes in Graphite and the Effects of Oxidation
,”
Carbon
0008-6223,
24
(
5
), pp.
535
543
.
38.
Tucker
,
M. O.
,
Rose
,
P. G.
, and
Burchell
,
T. D.
, 1986, “
The Fracture of Polygranular Graphites
,”
Carbon
0008-6223,
24
(
5
), pp.
581
602
.
You do not currently have access to this content.