The distribution of stress in an isotropic and infinitely large plate perforated by circular holes has long attracted attention from both mathematical and engineering standpoints. Unfortunately, almost all existing solutions are only applicable to stress-free conditions at the boundary of the holes, which is not always the case in engineering applications. In an attempt to cover a wider range of applications, this paper presents the exact explicit solution for the stress distribution in an infinite plate containing two equal/unequal circular holes subjected to general in-plane stresses at infinity and internal pressures inside the holes, following the approach proposed by Green (1940, “General Bi-Harmonic Analysis for a Plate Containing Circular Holes,” Proc. R. Soc. London, Ser. A, 176(964), pp. 121–139). The newly derived general solution has been verified not only with published solutions for special cases but also qualitatively with a comparable experimental testing program. In addition, some numerical examples are also provided to offer insight into the complexity of the interplay of parameters.

1.
Jeffery
,
G. B.
, 1921, “
Plane Stress and Plane Strain in Bipolar Co-Ordinates
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
221
, pp.
265
293
.
2.
Ling
,
C.-B.
, 1948, “
On the Stresses in a Plate Containing Two Circular Holes
,”
J. Appl. Phys.
0021-8979,
19
, pp.
77
82
.
3.
Iwaki
,
T.
, and
Miyao
,
K.
, 1980, “
Stress Concentration in a Plate With Two Unequal Circular Holes
,”
Int. J. Eng. Sci.
0020-7225,
18
(
8
), pp.
1077
1090
.
4.
Howland
,
R. C. J.
, and
Knight
,
R. C.
, 1939, “
Stress Functions for a Plate Containing Groups of Circular Holes
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
238
, pp.
357
392
.
5.
Green
,
A. E.
, 1940, “
General Bi-Harmonic Analysis for a Plate Containing Circular Holes
,”
Proc. R. Soc. London, Ser. A
1364-5021,
176
(
964
), pp.
121
139
.
6.
Haddon
,
R. A. W.
, 1967, “
Stresses in an Infinite Plate With Two Unequal Circular Holes
,”
Q. J. Mech. Appl. Math.
0033-5614,
20
(
3
), pp.
277
291
.
7.
Ting
,
K.
,
Chen
,
K. T.
, and
Yang
,
W. S.
, 1999, “
Applied Alternating Method to Analyze the Stress Concentration Around Interacting Multiple Circular Holes in an Infinite Domain
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
533
556
.
8.
Ukadgaonker
,
V. G.
, and
Patil
,
D. B.
, 1993, “
Stress Analysis of a Plate Containing Two Elliptical Holes Subjected to Uniform Pressures and Tangential Stresses on Hole Boundaries
,”
ASME J. Eng. Ind.
0022-0817,
115
, pp.
93
101
.
9.
Savin
,
G. N.
, 1961,
Stress Concentration Around Holes
,
Pergamon
,
New York
.
10.
Kirsch
,
G.
, 1898, “
Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
42
, pp.
797
807
.
11.
Bargui
,
H.
, and
Abousleiman
,
Y.
, 2000, “
2D and 3D Elastic and Poroelastic Stress Analysis for Multilateral Wellbore Junctions
,”
Pacific Rocks 2000
,
Doe
,
T.
,
Girard
,
J.
,
Liebman
,
M.
, and
Breeds
,
C.
, eds.,
Balkema
,
Rotterdam
, pp.
261
268
.
12.
Aadnøy
B.
, and
Edland
,
C.
, 1999, “
Borehole Stability of Multilateral Junctions
,” SPE Paper No. 56757, SPE ATCE, Houston, TX, Oct. 3–6.
13.
Papanastasiou
,
P.
,
Sibai
,
M.
,
Heiland
,
J.
,
Shao
,
J.-F.
,
Cook
,
J.
,
Fourmaintraux
,
D.
,
Onaisi
,
A.
,
Jeffryes
,
B.
, and
Charlez
,
P.
, 2002, “
Stability of a Multilateral Junction: Experimental Results and Numerical Modeling
,” presented at the
2002 SPE/ISRM Rock Mechanics Conference
,
Irving, TX
, Oct. 20–23, SPE/ISRM Paper No. 78212.
14.
Papanastasiou
,
P.
,
Sibai
,
M.
,
Heiland
,
J.
,
Shao
,
J.-F.
,
Cook
,
J.
,
Fourmaintraux
,
D.
,
Onaisi
,
A.
,
Jeffryes
,
B.
, and
Charlez
,
P.
, 2006, “
Stability of a Multilateral Junction: Experimental Results and Numerical Modeling
,”
SPE Drill. Completion
1064-6671,
21
(
1
), pp.
4
11
.
You do not currently have access to this content.