This paper develops a microscopic homogenization based continuum damage mechanics (HCDM) model framework for fiber reinforced composites undergoing interfacial debonding. It is an advancement over the 2D HCDM model developed by Raghavan and Ghosh (2005, “A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding,” Mech. Mater., 37(9), pp. 955–979), which does not yield accurate results for nonproportional loading histories. The present paper overcomes this shortcoming through the introduction of a principal damage coordinate system (PDCS) in the HCDM representation, which evolves with loading history. The material behavior is represented as a continuum constitutive law involving a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. The current work also extends the model of Raghavan and Ghosh to incorporate damage in 3D composites through functional forms of the fourth order damage tensor in terms of macroscopic strain components. The model is calibrated by homogenizing the micromechanical response of the representative volume element (RVE) for a few strain histories. This parametric representation can significantly enhance the computational efficiency of the model by avoiding the cumbersome strain space interpolations. The proposed model is validated by comparing the CDM results with homogenized micromechanical response of single and multiple fiber RVEs subjected to arbitrary loading history.

1.
Raghavan
,
P.
, and
Ghosh
,
S.
, 2005, “
A Continuum Damage Mechanics Model for Unidirectional Composites Undergoing Interfacial Debonding
,”
Mech. Mater.
0167-6636,
37
(
9
), pp.
955
979
.
2.
Kachanov
,
L. M.
, 1987,
Introduction to Continuum Damage Mechanics
,
Nijhoff
,
Dordrecht
.
3.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 2006,
Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors
,
2nd ed.
,
Elsevier
,
New York
.
4.
Krajicinovic
,
D.
, 1996,
Damage Mechanics
,
Elsevier
,
Amsterdam
.
5.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
North-Holland
,
Amsterdam
.
6.
Chaboche
,
J. L.
, 1981, “
Continuum Damage Mechanics. A Tool to Describe Phenomena Before Crack Initiation
,”
Nucl. Eng. Des.
0029-5493,
64
, pp.
233
247
.
7.
Ortiz
,
M.
, 1985, “
A Constitutive Theory for the Inelastic Behavior of Concrete
,”
Mech. Mater.
0167-6636,
4
, pp.
67
93
.
8.
Simo
,
J. C.
, and
Ju.
,
J. W.
, 1987, “
Strain and Stress-Based Continuum Damage Models. Part I: Formulation
,”
Int. J. Solids Struct.
0020-7683,
23
(
7
), pp.
821
840
.
9.
Chow
,
C. L.
, and
Wang
,
J.
, 1987, “
An Anisotropic Theory of Elasticity for Continuum Damage Mechanics
,”
Int. J. Fract.
0376-9429,
20
, pp.
381
390
.
10.
Matzenmiller
,
A.
,
Lubliner
,
J.
, and
Taylor
,
R. L.
, 1995, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
0167-6636,
20
, pp.
125
152
.
11.
Lene
,
F.
, and
Leguillon
,
D.
, 1982, “
Homogenized Constitutive Law for a Partially Cohesive Composite Material
,”
Int. J. Solids Struct.
0020-7683,
18
(
5
), pp.
443
458
.
12.
Choi
,
J.
, and
Tamma
,
K. K.
, 2001, “
Woven Fabric Composites. Part I: Prediction of Homogenized Elastic Properties and Micromechanical Damage Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2285
2298
.
13.
Fish
,
J.
,
Yu
,
Q.
, and
Shek
,
K.
, 1999, “
Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
1657
1679
.
14.
Costanzo
,
F.
,
Botd
,
J. G.
, and
Allen
,
D. H.
, 1995, “
Micromechanics and Homogenization of Inelastic Composite Materials With Growing Cracks
,”
J. Mech. Phys. Solids
0022-5096,
44
(
3
), pp.
333
370
.
15.
Chaboche
,
J. L.
,
Kruch
,
S.
, and
Pottier
,
T.
, 1998, “
Micromechanics Versus Macromechanics: A Combined Approach for Metal Matrix Composite Constitutive Modeling
,”
Eur. J. Mech. A/Solids
0997-7538,
17
, pp.
885
908
.
16.
Wriggers
,
P.
,
Zavarise
,
G.
, and
Zohdi
,
T. I.
, 1998, “
A Computational Study of Interfacial Debonding Damage in Fibrous Composite Materials
,”
Comput. Mater. Sci.
0927-0256,
12
, pp.
39
56
.
17.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2001, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
0178-7675,
27
, pp.
37
48
.
18.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1992, “
A Plasticity-Damage Theory for Large Deformation of Solids. Part I: Theoretical Formulation
,”
Int. J. Eng. Sci.
0020-7225,
30
(
9
), pp.
1089
1108
.
19.
Ghosh
,
S.
,
Bai
,
J.
, and
Raghavan
,
P.
, 2007, “
Concurrent Multi-Level Model for Damage Evolution in Microstructurally Debonding Composites
,”
Mech. Mater.
0167-6636,
39
(
3
), pp.
241
266
.
20.
Ghosh
,
S.
,
Ling
,
Y.
,
Majumdar
,
B.
, and
Kim
,
R.
, 2000, “
Interfacial Debonding Analysis in Multiple Fiber Reinforced Composites
,”
Mech. Mater.
0167-6636,
32
, pp.
561
591
.
21.
Li
,
S.
, and
Ghosh
,
S.
, 2004, “
Debonding in Composite Microstructures With Morphological Variations
,”
Int. J. Comput. Math.
0020-7160,
1
, pp.
121
149
.
22.
Ghosh
,
S.
,
Lee
,
K.
, and
Raghavan
,
P.
, 2001, “
A Multi-Level Computational Model for Multi-Scale Damage Analysis in Composite and Porous Materials
,”
Int. J. Solids Struct.
0020-7683,
38
(
14
), pp.
2335
2385
.
23.
Raghavan
,
P.
, and
Ghosh
,
S.
, 2004, “
Concurrent Multi-Scale Analysis of Elastic Composites by a Multi-Level Computational Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
6–8
), pp.
497
538
.
24.
Chow
,
C. L.
,
Yang
,
X. J.
, and
Edmund
,
C.
, 2001, “
Viscoplastic Constitutive Modeling of Anisotropic Damage Under Nonproportional Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
403
408
.
25.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
(
20–22
), pp.
2899
2938
.
26.
Cordebois
,
J. P.
, and
Sidoroff
,
F.
, 1982, “
Anisotropic Damage in Elasticity and Plasticity
,”
J. Mec. Theor. Appl.
0750-7240, pp.
45
60
.
27.
Carol
,
I.
,
Rizzi
,
E.
, and
Willam
,
K.
, 1994, “
A Unified Theory of Elastic Degradation and Damage Based on a Loading Surface
,”
Int. J. Solids Struct.
0020-7683,
31
(
20
), pp.
2835
2865
.
28.
Swaminathan
,
S.
,
Pagano
,
N. J.
, and
Ghosh
,
S.
, 2006, “
Analysis of Interfacial Debonding in Three-Dimensional Composite Microstructures
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
96
106
.
29.
Chandra
,
N.
,
Li
,
H.
,
Shet
,
C.
, and
Ghonem
,
H.
, 2002, “
Some Issues in the Application of Cohesive Zone Models for Metal-Ceramic Interfaces
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2827
2855
.
30.
Pellegrino
,
C.
,
Galvanetto
,
U.
, and
Schrefler
,
B. A.
, 1999, “
Numerical Homogenization of Periodic Composite Materials With Non-Linear Material Components
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1609
1637
.
31.
Segurado
,
J.
, and
Llorca
,
J.
, 2002, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2107
2121
.
32.
Murakami
,
S.
, 1988, “
Mechanical Modeling of Material Damage
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
280
286
.
33.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1996, “
On the Symmetrization of the Effective Stress Tensor in Continuum Damage Mechanics
,”
J. Mech. Behav. Mater.
0334-8938,
7
(
2
), pp.
139
165
.
34.
Hill
,
R.
, 1948, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, Ser. A
1364-5021,
193
, pp.
281
297
.
35.
Raghavan
,
P.
, and
Ghosh
,
S.
, 2004, “
Concurrent Multi-Scale Analysis of Elastic Composites by a Multi-Level Computational Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
497
538
.
36.
Swaminathan
,
S.
,
Ghosh
,
S.
, and
Pagano
,
N. J.
, 2006, “
Statistically Equivalent Representative Volume Elements for Composite Microstructures. Part I: Without Damage
,”
J. Compos. Mater.
0021-9983,
40
(
7
), pp.
583
604
.
37.
Swaminathan
,
S.
,
Ghosh
,
S.
, and
Pagano
,
N. J.
, 2006, “
Statistically Equivalent Representative Volume Elements for Composite Microstructures. Part II: With Damage
,”
J. Compos. Mater.
0021-9983,
40
(
7
), pp.
605
621
.
You do not currently have access to this content.