A constitutive model is proposed to investigate the strengthening mechanism and the relationship between nanostructures and effective mechanical properties of the aluminum-based amorphous nanocomposites. A continuum micromechanics-based, three-phase composite model comprises of Al particles, rare-earth enriched interlayers, and the amorphous aluminum matrix. The local stress field and deformation are formulated based on the concept of eigenstrain and equivalent inclusion method with consideration of both the particle-interlayer-matrix interaction and the particle-particle interaction. An ensemble-volume averaging technique is conducted to obtain the overall elastoplastic constitutive behavior for amorphous nanocomposites with randomly distributed spherical nanoparticles. Explicit expressions of the effective elastic stiffness and yield function in terms of the constituent properties and nanostructures are obtained. The effective elastoplastic stress-strain curves for uniaxial loading and the initial yield surfaces for axisymmetric loading are calculated. Simulations are conducted to investigate the effects of the particle size and pairwise particle interaction on the effective mechanical properties.

1.
Inoue
,
A.
, 1998, “
Amorphous, Nanoquasicrystalline and Nanocrystalline Alloys in Al-Based Systems
,”
Prog. Mater. Sci.
0079-6425,
43
, pp.
365
520
.
2.
Kim
,
Y. H.
,
Inoue
,
A.
, and
Masumoto
,
T.
, 1991, “
Ultrahigh Mechanical Strengths of Al88Y2Ni10−xMx (M=Mn, Fe Or Co) Amorphous Alloys Containing Nanoscale Fcc-Al Particles
,”
Mater. Trans., JIM
0916-1821,
32
, pp.
599
608
.
3.
Inoue
,
A.
,
Kim
,
Y. H.
, and
Masumoto
,
T.
, 1992, “
A Large Tensile Elongation Induced by Crystallization in an Amorphous Al88Ni10Ce2 Alloy
,”
Mater. Trans., JIM
0916-1821,
33
, pp.
487
490
.
4.
He
,
Y.
,
Poon
,
S. J.
, and
Shiflet
,
G. J.
, 1998, “
Synthesis and Properties of Metallic Glasses That Contain Aluminum
,”
Science
0036-8075,
241
, pp.
1640
1642
.
5.
Zhong
,
Z. C.
,
Jiang
,
X. Y.
, and
Greer
,
A. L.
, 1997, “
Microstructure and Hardening of Al-Based Nanophase Composites
,”
Mater. Sci. Eng., A
0921-5093,
226
, pp.
531
535
.
6.
Hono
,
K.
,
Zhang
,
Y.
,
Inoue
,
A.
, and
Sakurai
,
T.
, 1997, “
APFIM Studies on Nanocrystallization of Amorphous Alloys
,”
Mater. Sci. Eng., A
0921-5093,
226
, pp.
498
502
.
7.
Jiang
,
X. Y.
,
Zhong
,
Z. C.
, and
Greer
,
A. L.
, 1997, “
Particle-Size Effects in Primary Crystallization of Amorphous Al–Ni–Y Alloys
,”
Mater. Sci. Eng., A
0921-5093,
226
, pp.
789
793
.
8.
Choi
,
G. S.
,
Kim
,
Y. H.
,
Cho
,
H. K.
,
Inoue
,
A.
, and
Masumoto
,
T.
, 1995, “
Ultrahigh Tensile Strength of Amorphous Al–Ni–(Nd,Gd)–Fe Alloys Containing Nanocrystalline Al Particles
,”
Scr. Metall. Mater.
0956-716X,
33
, pp.
1301
1306
.
9.
Gogebakan
,
M.
, 2002, “
Mechanical Properties of Alyni Amorphous Alloys
,”
J. Light Met.
1471-5317,
2
, pp.
271
275
.
10.
Kim
,
H. S.
,
Warren
,
P. J.
,
Cantor
,
B.
, and
Lee
,
H. R.
, 1999, “
Mechanical Properties of Partially Crystallized Aluminum Based Amorphous Alloys
,”
Nanostruct. Mater.
0965-9773,
11
, pp.
241
247
.
11.
Kim
,
H. S.
, and
Hong
,
S. L.
, 1999, “
Model of the Ductile-Brittle Transition of Partially Crystallized Amorphous Al–Ni–Y Alloys
,”
Acta Mater.
1359-6454,
47
, pp.
2059
2066
.
12.
Liu
,
T. H.
, and
Sun
,
L. Z.
, 2005, “
Multi-Scale Modeling of Elastoplastic Deformation and Strengthening Mechanisms in Aluminum-Based Amorphous Nanocomposites
,”
Acta Mater.
1359-6454,
53
, pp.
2693
2701
.
13.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
14.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
2nd ed.
,
Kluwer Academic
,
Dordrecht
.
15.
Berveiller
,
M.
,
Fassi-Fehri
,
O.
, and
Hihi
,
A.
, 1987, “
The Problem of Two Plastic and Heterogeneous Inclusions in an Anisotropic Medium
,”
Int. J. Eng. Sci.
0020-7225,
25
, pp.
691
709
.
16.
Hori
,
M.
, and
Nemat-Nasser
,
S.
, 1993, “
Double-Inclusion Model and Overall Moduli of Multi-Phase Composites
,”
Mech. Mater.
0167-6636,
14
, pp.
189
206
.
17.
Ju
,
J. W.
, and
Chen
,
T. M.
, 1994, “
Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities
,”
Acta Mech.
0001-5970,
103
, pp.
103
121
.
18.
Ma
,
H.
,
Hu
,
G. K.
, and
Huang
,
Z. P.
, 2004, “
A Micromechanical Method for Particulate Composites with Finite Particle Concentration
,”
Mech. Mater.
0167-6636,
36
, pp.
359
368
.
19.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Paulino
,
G. H.
, 2004, “
Micromechanics-Based Elastic Model for Functionally Graded Materials With Particle Interactions
,”
Acta Mater.
1359-6454,
52
, pp.
3535
3543
.
20.
Yin
,
H. M.
, and
Sun
,
L. Z.
, 2006, “
Magnetoelastic Modeling of Composites Containing Randomly Dispersed Ferromagnetic Particles
,”
Philos. Mag.
1478-6435,
86
, pp.
4367
4395
.
21.
Ju
,
J. W.
, and
Sun
,
L. Z.
, 1999, “
A Novel Formulation for Exterior-Point Eshelby’S Tensor of an Ellipsoidal Inclusion
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
570
574
.
22.
Ju
,
J. W.
, and
Sun
,
L. Z.
, 2001, “
Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities. Part I: Micromechanics-Based Formulation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
183
201
.
23.
Nan
,
C. W.
, and
Clarke
,
D. R.
, 1996, “
The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites
,”
Acta Mater.
1359-6454,
44
, pp.
3801
3811
.
24.
Stolken
,
J. S.
, and
Evans
,
A. G.
, 1998, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
1359-6454,
46
, pp.
5109
5115
.
You do not currently have access to this content.