A simple formula to study the large amplitude free vibration behavior of structural members, such as beams and plates, is developed. The nonlinearity considered is of von Karman type, and after eliminating the space variable(s), the corresponding temporal equation is a homogeneous Duffing equation. The simple formula uses the tension(s) developed in the structural members due to large deflections along with the corresponding buckling load obtained when the structural members are subjected to the end axial or edge compressive load(s) and are equal in magnitude of the tension(s). The ratios of the nonlinear to the linear radian frequencies for beams and the nonlinear to linear time periods for plates are obtained as a function of the maximum amplitude ratio. The numerical results, for the first mode of free vibration obtained from the present simple formula compare very well to those available in the literature obtained by applying the standard analytical or numerical methods with relatively complex formulations.

1.
Woinowsky-Krieger
,
S.
, 1950, “
The Effect of an Axial Force on the Vibration of Hinged Bars
,”
ASME J. Appl. Mech.
0021-8936,
17
, pp.
35
36
.
2.
Singh
,
G.
,
Sharma
,
A. K.
, and
Rao
,
G. V.
, 1990, “
Large-Amplitude Free Vibrations of Beams—A Discussion Various Formulations and Assumptions
,”
J. Sound Vib.
0022-460X,
142
, pp.
77
85
.
3.
Marur
,
R. S.
, 2000, “
Advances in Nonlinear Vibration Analysis of Structures—Part I, Beams
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
26
(
3
), pp.
243
249
.
4.
Sathyamoorthy
,
M.
, 1982, “
Nonlinear Analysis of Beams—Part I: A Survey of Recent Advances
,”
Shock Vib. Dig.
0583-1024,
14
, pp.
19
35
.
5.
Sathyamoorthy
,
M.
, 1982, “
Nonlinear Analysis of Beams—Part II: Finite Element Methods
,”
Shock Vib. Dig.
0583-1024,
14
, pp.
7
18
.
6.
Sathyamoorthy
,
M.
, 1998,
Nonlinear Analysis of Structures
,
CRC Press
, Boca Raton,
CRC Mechanical Engineering Series
.
7.
Wah
,
T.
, 1963, “
Vibration of Circular Plates at Large Amplitudes
,”
J. Engrg. Mech. Div.
0044-7951,
89
, pp.
1
15
.
8.
Yamaki
,
N.
, 1961, “
Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates
,”
Z. Angew. Math. Mech.
0044-2267,
41
, pp.
501
510
.
9.
Leissa
,
A. W.
, 1969,
Vibration of Plates
, Scientific and Technical Information Division, Office of Technology Utilization, National Aeronautics and Space Administration,
Washington, DC.
10.
Rao
,
G. V.
, and
Naidu
,
N. R.
, 2001, “
Prediction of Fundamental Frequencies of Stressed Spring Hinged Tapered Beams
,”
AIAA J.
0001-1452,
39
, pp.
186
188
.
11.
Rao
,
G. V.
, 2001, “
A Simple Formula to Predict the Fundamental Frequency of Initially Stressed Square Plates
,”
J. Sound Vib.
0022-460X,
246
, pp.
185
189
.
12.
Rao
,
G. V.
, and
Raju
,
K. K.
, 2002, “
Simple Formula for Evaluating the Fundamental Frequency Parameter of Initially Stressed Uniform Beams on Elastic Foundation
,”
Fire Technol.
0015-2684,
124
, pp.
451
454
.
13.
Rao
,
G. V.
, and
Neetha
,
R.
, 2003, “
Prediction of Fundamental Frequency of Initially Inplane Loaded Thick Circular Plates
,”
J. Sound Vib.
0022-460X,
259
, pp.
1265
1268
.
14.
Rao
,
G. V.
, and
Raju
,
K. K.
, 2002, “
Thermal Postbuckling of Uniform Columns
,”
AIAA J.
0001-1452,
40
, pp.
2138
2140
.
15.
Rao
,
G. V.
, and
Raju
,
K. K.
, 2004, “
Applicability of a Simple Method for Thermal Postbuckling of Square Plates
,”
AIAA J.
0001-1452,
42
, pp.
1724
1726
.
16.
Rao
,
G. V.
, and
Raju
,
K. K.
, 2005, “
A Simple Solution for the Thermal Postbuckling of Uniform Columns and Circular Plates
,”
J. Struct. Eng. (India)
0970-0137,
32
, pp.
217
220
.
17.
Azrar
,
L.
, and
White
,
R. G.
, 1999, “
A Semi Analytical Approach to the Nonlinear Dynamic Response Problems of S-S and C-C Beams at Large Vibration Amplitudes—Part I: General Theory and Application to the Single Mode Approach to Free and Forced Vibration Analysis
,”
J. Sound Vib.
0022-460X,
224
, pp.
183
207
.
18.
Rao
,
G. V.
,
Meera Saheb
,
K.
, and
Ranga Janardhan
,
G.
, 2006, “
Concept of Coupled Displacement Field for Large Amplitude Free Vibrations of Shear Flexible Beams
,”
Fire Technol.
0015-2684,
128
, pp.
251
255
.
19.
Timoshenko
,
S. P.
, and
Gere
,
G. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
, New York.
20.
Chu
,
M.
, 1972, “
Non-Linear Vibrations of Beams by Matrix Displacement Method
,”
AIAA J.
0001-1452,
10
, pp.
355
357
.
21.
Singh
,
G.
,
Rao
,
G. V.
, and
Iyengar
,
N. G. R.
, 1990, “
Re-Investigation of Large-Amplitude Free Vibrations of Beams Using Finite Elements
,”
J. Sound Vib.
0022-460X,
143
, pp.
351
355
.
22.
Rao
,
G. V.
, and
Raju
,
K. K.
, 2003, “
Large Amplitude Free Vibrations of Beams—An Energy Approach
,”
Z. Angew. Math. Mech.
0044-2267,
7
, pp.
493
498
.
23.
Berger
,
H. M.
, 1955, “
A New Approach to the Analysis of Large Deflection of Plates
,”
ASME J. Appl. Mech.
0021-8936,
22
, pp.
465
472
.
24.
Rao
,
G. V.
,
Raju
,
J. S.
, and
Raju
,
K. K.
, 1976, “
A Finite Element Formulation for Large Amplitude Flexural Vibrations of Thin Rectangular Plates
,”
Comput. Struct.
0045-7949,
6
, pp.
163
167
.
You do not currently have access to this content.