For a completely clamped elastic shell, an explicit upper bound is derived for the error in the energy norm of a solution of the linear, quasi-shallow shell equations as compared to the corresponding solution of the Sanders-Koiter equations.

1.
Libai
,
A.
, 1962, “
On the Nonlinear Elastokinetics of Shells and Beams
,”
J. Aerosp. Sci.
0095-9820,
29
, pp.
1190
1195
, 1209.
2.
Koiter
,
W. T.
, 1966, “
On the Nonlinear Theory of Thin Elastic Shells
,”
Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.
0023-3366,
69
, pp.
1
54
.
3.
Marguerre
,
K.
, 1938, “
Zur Theorie der Gekrümmten Platte Grosser Formänderung
,”
Proc. 5th Int. Cong. Appl. Mechanics
,
John Wiley
,
New York
), pp.
93
101
.
4.
Budiansky
,
B.
, and
Sanders
,
J. L.
, Jr.
, 1963, “
On the ‘Best’ First-Order Linear Shell Theory
,”
Progress in Applied Mechanics
(Prager Anniversary Volume),
Macmillan
, New York, pp.
129
140
.
5.
Simmonds
,
J. G.
, 2007, “
The Hypercircle Theorem for Elastic Shells and the Accuracy of Novozhilov’s Simplified Equations for General Cylindrical Shells
,”
Discrete Contin. Dyn. Syst.
1078-0947,
7
, pp.
643
650
.
6.
Prager
,
W.
, and
Synge
,
J. L.
, 1947, “
Approximations in Elasticity Based on the Concept of Function Space
,”
Q. Appl. Math.
0033-569X,
5
, pp.
241
269
.
You do not currently have access to this content.