For a completely clamped elastic shell, an explicit upper bound is derived for the error in the energy norm of a solution of the linear, quasi-shallow shell equations as compared to the corresponding solution of the Sanders-Koiter equations.
Issue Section:
Technical Briefs
1.
Libai
, A.
, 1962, “On the Nonlinear Elastokinetics of Shells and Beams
,” J. Aerosp. Sci.
0095-9820, 29
, pp. 1190
–1195
, 1209.2.
Koiter
, W. T.
, 1966, “On the Nonlinear Theory of Thin Elastic Shells
,” Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.
0023-3366, 69
, pp. 1
–54
.3.
Marguerre
, K.
, 1938, “Zur Theorie der Gekrümmten Platte Grosser Formänderung
,” Proc. 5th Int. Cong. Appl. Mechanics
, John Wiley
, New York
), pp. 93
–101
.4.
Budiansky
, B.
, and Sanders
, J. L.
, Jr., 1963, “On the ‘Best’ First-Order Linear Shell Theory
,” Progress in Applied Mechanics
(Prager Anniversary Volume), Macmillan
, New York, pp. 129
–140
.5.
Simmonds
, J. G.
, 2007, “The Hypercircle Theorem for Elastic Shells and the Accuracy of Novozhilov’s Simplified Equations for General Cylindrical Shells
,” Discrete Contin. Dyn. Syst.
1078-0947, 7
, pp. 643
–650
.6.
Prager
, W.
, and Synge
, J. L.
, 1947, “Approximations in Elasticity Based on the Concept of Function Space
,” Q. Appl. Math.
0033-569X, 5
, pp. 241
–269
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.