The mechanical behavior of the red blood cell membrane is governed by the lipid bilayer which resists changes in surface area and the underlying spectrin network which resists changes in shape. The constituent spectrin chains of the network consist of a series of domains along the chain, which exhibit noncovalent interactions. Upon sufficient extension of a chain, each folded domain undergoes mechanically-induced unfolding after reaching a chain force between 10 and 35pN. Individual spectrin chains within the network experience their first unfolding event at different levels of macroscopic strain depending on the macroscopic loading conditions and the orientation of each constituent chain with respect to the macroscopic loading. A microstructurally-informed continuum level constitutive model is developed which tracks individual chain deformation behavior as well as the overall macroscopic network stress-strain behavior. Using the introduced continuum approach and statistical mechanics based models of the chain force-extension behavior together with a transition state model of domain unfolding; a constitutive model for the membrane stress-stretch behavior is constructed. Uniaxial tension and simple shear behaviors of the membrane are simulated incorporating the unfolding of the individual chains. A Taylor averaging approach is used as a first approximation to account for the irregularities in the spectrin network which result in a near plateau-like force behavior with increasing stretch.

1.
Rief
,
M.
,
Gautel
,
M.
,
Oesterhelt
,
F.
,
Fernandez
,
J. M.
, and
Gaub
,
H. E.
, 1997, “
Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM
,”
Science
0036-8075,
276
, pp.
1109
1112
.
2.
Oberhauser
,
A. F.
,
Marszalek
,
P. E.
,
Erickson
,
H. P.
, and
Fernandez
,
J. M.
, 1998, “
The Molecular Elasticity of the Extracellular Matrix Protein Tenascin
,”
Nature (London)
0028-0836,
393
, pp.
181
185
.
3.
Fisher
,
T. E.
,
Oberhauser
,
A. F.
,
Carrion-Vazquez
,
M.
,
Marszalek
,
P. E.
, and
Fernandez
,
J. M.
, 1999, “
The Study of Protein Mechanics With the Atomic Force Microscope
,”
TIBS
0968-0004,
24
, pp.
379
384
.
4.
Rief
,
M.
,
Pascual
,
J.
,
Saraste
,
M.
, and
Gaub
,
H. E.
, 1999, “
Single Molecule Force Spectroscopy of Spectrin Repeats: Low Unfolding Forces in Helix Bundles
,”
J. Mol. Biol.
0022-2836,
286
, pp.
553
561
.
5.
Law
,
R.
,
Carl
,
P.
,
Harper
,
S.
,
Dalhaimer
,
P.
,
Speicher
,
D.
, and
Discher
,
D. E.
, 2003, “
Cooperativity in Forced Unfolding of Tandem Spectrin Repeats
,”
Biophys. J.
0006-3495,
84
, pp.
533
544
.
6.
Arslan
,
M.
, and
Boyce
,
M. C.
, 2005, “
Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure
,”
J. Appl. Mech.
0021-8936,
73
, pp.
536
543
.
7.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
0021-9606,
4
, pp.
283
291
.
8.
Evans
,
E. A.
, 1973, “
A New Material Concept for the Red Cell Membrane
,”
Biophys. J.
0006-3495,
13
, pp.
926
940
.
9.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R. P.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
0006-3495,
13
, pp.
245
264
.
10.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2003, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
2259
2280
.
11.
Mills
,
J. P.
,
Qie
,
L.
,
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2004, “
Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell With Optical Tweezers
,”
Mech. Chem. Biosyst.
1546-2048,
1
, pp.
169
180
.
12.
Flory
,
P. J.
, 1953,
Principles of Polymer Chemistry
,
Cornell University Press
,
Ithaca, NY
.
13.
Treloar
,
L. R. G.
, 1958,
The Physics of Rubber Elasticity
,
Clarendon
,
Oxford
.
14.
Boyce
,
M. C.
, and
Arruda
,
E. M.
, 2000, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
0035-9475,
73
, pp.
504
523
.
15.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
Orthotropic Hyperelasticity in Terms of an Arbitrary Molecular Chain Model
,”
J. Appl. Mech.
0021-8936,
69
, pp.
198
201
.
16.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
J. Appl. Mech.
0021-8936,
69
, pp.
570
579
.
17.
Bergstrom
,
J.
, and
Boyce
,
M. C.
, 2001, “
Deformation of Elastomeric Networks: Relation Between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity
,”
Macromolecules
0024-9297,
34
(
3
), pp.
614
626
.
18.
Holzapfel
,
G. A.
, 2002, “
Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls With Residual Stresses
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
(
CISM Courses and Lectures, International Centre for Mechanical Sciences
),
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer-Verlag
,
Wien
.
19.
Qi
,
H. J.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
, 2005, “
Protein Forced Unfolding and its Effect on the Finite Deformation Stress-Strain Behavior of Biomacromolecular Solids
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
874
, pp.
L.4.3.1
L.4.3.6
.
20.
Qi
,
H. J.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
, 2006, “
Constitutive Model for the Stress-Strain Behavior of Biomacromolecular Networks Containing Folded Domains
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
509
518
.
21.
Arslan
,
M.
,
Boyce
,
M. C.
,
Qi
,
H. J.
, and
Ortiz
,
C.
, 2005, “
Constitutive Modeling of the Stress-Stretch Behavior of Biological Membranes Containing Folded Domains
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
898
, pp.
L14
-
05
.
22.
Kuhl
,
E.
,
Garikipati
,
K.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2005, “
Remodeling of Biological Tissue: Mechanically Induced Reorientation of a Transversely Isotropic Chain Network
,”
J. Mech. Phys. Solids
0022-5096,
53
(
7
), pp.
1552
1573
.
23.
Bausch
,
A. R.
, and
Kroy
,
K.
, 2006, “
A Bottom-Up Approach to Cell Mechanics
,”
Nat. Phys.
1745-2473,
2
, pp.
231
238
.
24.
Liu
,
S.
,
Derick
,
L. H.
, and
Palek
,
J.
, 1987, “
Visualization of the Hexagonal Lattice in the Erythrocyte Membrane Skeleton
,”
J. Cell Biol.
0021-9525,
104
, pp.
527
536
.
25.
Byers
,
T. J.
, and
Branton
,
D.
, 1985, “
Visualization of the Protein Associations in the Erythrocyte Membrane Skeleton
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
82
, pp.
6153
6157
.
26.
Rief
,
M.
,
Fernandez
,
J. M.
, and
Gaub
,
H. E.
, 1998, “
Elastically Coupled Two-Level Systems as a Model for Biopolymer Extensibility
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
4764
4767
.
27.
Bell
,
G. I.
, 1978, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
0036-8075,
200
, pp.
618
627
.
28.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
.
29.
Qi
,
H. J.
, and
Boyce
,
M. C.
, 2004, “
Constitutive Model for Stretch-Induced Softening of the Stress-Stretch Behavior of Elastomeric Materials
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2187
2205
.
30.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
You do not currently have access to this content.