We use the compact harmonic general solutions of transversely isotropic piezothermoelastic materials to construct the three-dimensional Green’s function of a steady point heat source on the surface of a semi-infinite transversely isotropic piezothermoelastic material by four newly introduced harmonic functions. All components of the coupled field are expressed in terms of elementary functions and are convenient to use. Numerical results for cadmium selenide are given graphically by contours.
Issue Section:
Research Papers
Keywords:
thermoelasticity,
harmonic analysis,
cadmium compounds,
II-VI semiconductors,
Green's function methods
Topics:
Heat
1.
Deeg
, W. F.
, 1980, “The Analysis of Dislocation, Crack, and Inclusion Problem in Piezoelectric Solids
,” Ph.D. dissertation, Stanford University, Stanford, CA.2.
Wang
, B.
, 1992, “Three Dimensional Analysis of An Ellipsoidal Inclusion in a Piezoelectric Material
,” Int. J. Solids Struct.
0020-7683, 29
, pp. 293
–308
.3.
Benveniste
, Y.
, 1992, “The Determination of The Elastic and Electric Fields in a Piezoelectric Inhomogeneity
,” J. Appl. Phys.
0021-8979, 72
, pp. 1086
–1095
.4.
Chen
, T. Y.
, 1993, “Green’s Functions and the Nonuniform Transformation Problem in a Piezoelectric Medium
,” Mech. Res. Commun.
0093-6413, 20
, pp. 271
–278
.5.
Chen
, T. Y.
, and Lin
, F. Z.
, 1993, “Numerical Evaluation of Derivatives of The Anisotropic Piezoelectric Green’s Functions
,” Mech. Res. Commun.
0093-6413, 20
, pp. 501
–506
.6.
Pan
, E. N.
, 1999, “A BEM Analysis of Fracture Mechanics in 2D Anisotropic Piezoelectric Solids
,” Eng. Anal. Boundary Elem.
0955-7997, 23
, pp. 67
–76
.7.
Gao
, C. F.
, and Fan
, W. X.
, 1998, “Green’s Functions for The Plane Problem in a Half Infinite Piezoelectric Medium
,” Mech. Res. Commun.
0093-6413, 25
, pp. 69
–74
.8.
Pan
, E.
, and Tonon
, F.
, 2000, “Three-Dimensional Green’s Functions in Anisotropic Piezoelectric Solids
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 943
–958
.9.
Pan
, E.
, and Yuan
, F. G.
, 2000, “Three-Dimensional Green’s Functions in Anisotropic Piezoelectric Bimaterials
,” Int. J. Eng. Sci.
0020-7225, 38
, pp. 1939
–1960
.10.
Sosa
, H. A.
, and Castro
, M. A.
, 1994, “On Concentrated Load at Boundary of a Piezoelectric Half-Plane
,” J. Mech. Phys. Solids
0022-5096, 42
, pp. 1105
–1122
.11.
Lee
, J. S.
, and Jiang
, L. Z.
, 1994, “A Boundary Integral Formulation and 2D Fundamental Solution for Piezoelectric Media
,” Mech. Res. Commun.
0093-6413, 22
, pp. 47
–54
.12.
Ding
, H. J.
, Wang
, G. Q.
, and Chen
, W. Q.
, 1997, “Fundamental Solution for Plane Problem of Piezoelectric Materials
,” Science in China, Sci. China, Ser. E: Technol. Sci.
1006-9321, 40
, pp. 331
–336
.13.
Ding
, H. J.
, Wang
, G. Q
, and Chen
, W. Q.
, 1998, “A Boundary Integral Formulation and 2D Fundamental Solutions for Piezoelectric Media
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 158
, pp. 65
–80
.14.
Ding
, H. J.
, Wang
, G. Q.
, and Chen
, W. Q.
, 1997, “Green’s Functions for a Two-phase Infinite Piezoelectric Plane
,” Proc. R. Soc. London, Ser. A
1364-5021, 453
, pp. 2241
–2257
.15.
Wang
, Z. K.
, and Chen
, G. C.
, 1994, “A General Solution and The Application of Space Axisymmetric Problem in Piezoelectric Materials
,” Appl. Math. Mech.
0253-4827, 15
, pp. 615
–626
.16.
Wang
, Z. K.
, and Zheng
, B. L.
, 1995, “The General Solution of Three-dimensional Problem in Piezoelectric Media
,” Int. J. Solids Struct.
0020-7683, 31
, pp. 105
–115
.17.
Dunn
, M. L.
, 1994, “Electroelastic Green’s Functions for Transversely Isotropic Piezoelectric Media and Their Application to The Solution of Inclusion and Inhomogeneity Problems
,” Int. J. Eng. Sci.
0020-7225, 32
, pp. 119
–131
.18.
Dunn
, M. L.
, and Wienecke
, H. A.
, 1996, “Green’s Functions for Transversely Isotropic Piezoelectric Solids
,” Int. J. Solids Struct.
0020-7683, 33
, pp. 4571
–4581
.19.
Dunn
, M. L.
, and Wienecke
, H. A.
, 1999, “Half-Space Green’s Functions For Transversely Isotropic Piezoelectric Solids
,” ASME J. Appl. Mech.
0021-8936, 66
, pp. 675
–679
.20.
Ding
, H. J.
, Liang
, J.
, and Chen
, B.
, 1996, “Fundamental Solution for Transversely Isotropic Piezoelectric Media
,” Sci. China, Ser. E: Technol. Sci.
1006-9321, 39
, pp. 766
–775
.21.
Ding
, H. J.
, Chen
, B.
, and Liang
, J.
, 1997, “On the Green’s Functions for Two-Phase Transversely Isotropic Piezoelectric Media
,” Int. J. Solids Struct.
0020-7683, 34
, pp. 3041
–3057
.22.
Dunn
, M. L.
, and Wienecke
, H. A.
, 1997, “Inclusions and Inhomogeneities in Transversely Isotropic Piezoelectric Solids
,” Int. J. Solids Struct.
0020-7683, 34
, pp. 3571
–3582
.23.
Rao
, S. S.
, and Sunar
, M.
, 1993, “Analysis of Distributed Thermopiezoelectric Sensors and Actuators in Advanced Intelligent Structures
,” AIAA J.
0001-1452, 31
, pp. 1280
–1284
.24.
Qin
, Q. H.
, 1998, “Thermoelectroelastic Green’s Function for a Piezoelectric Plate Containing an Elliptic Hole
,” Mech. Mater.
0167-6636, 30
, pp. 21
–29
.25.
Qin
, Q. H.
, 1999, “Green’s Function for Thermopiezoelectric Materials with Holes of Various Shapes
,” Arch. Appl. Mech.
0939-1533, 69
, pp. 406
–418
.26.
Qin
, Q. H.
, 1999, “Thermoelectroelastic Green’s Function for Thermal Load inside or on the Boundary of an Elliptic Inclusion
,” Mech. Mater.
0167-6636, 31
, pp. 611
–626
.27.
Qin
, Q. H.
, 2000, “Thermoelectroelastic Solution on Elliptic Inclusions and Its Application to Crack-inclusion Problems
,” Appl. Math. Model.
0307-904X, 25
, pp. 1
–23
.28.
Chen
, W. Q.
, 2000, “On the General Solution for Piezothermoelasticity for Transverse Isotropy with Application
,” ASME J. Appl. Mech.
0021-8936, 67
, pp. 705
–711
.29.
Chen
, W. Q.
, Lim
, C. W.
, and Ding
, H. J.
, 2005, “Point Temperature Solution for a Penny-shaped Crack in An Infinite Transversely Isotropic Thermo-Piezo-Elastic Medium
,” Eng. Anal. Boundary Elem.
0955-7997, 29
, pp. 524
–532
.30.
Ding
, H. J.
, Hou
, P. F.
, and Guo
, F. L.
, 1999, “The Elastic and Electric Fields for Elliptical Hertzian Contact for Transversely Isotropic Piezoelectric Bodies
,” ASME J. Appl. Mech.
0021-8936, 66
, pp. 560
–562
.31.
Ashida
, F.
, and Tauchert
, T. R.
, 2001, “A General Plane-Stress Solution in Cylindrical Coordinates for a Piezothermoelastic Plate
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 4969
–4985
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.