A novel Bessel function method is proposed to obtain the exact solutions for the free-vibration analysis of rectangular thin plates with three edge conditions: (i) fully simply supported; (ii) fully clamped, and (iii) two opposite edges simply supported and the other two edges clamped. Because Bessel functions satisfy the biharmonic differential equation of solid thin plate, the basic idea of the method is to superpose different Bessel functions to satisfy the edge conditions such that the governing differential equation and the boundary conditions of the thin plate are exactly satisfied. It is shown that the proposed method provides simple, direct, and highly accurate solutions for this family of problems. Examples are demonstrated by calculating the natural frequencies and the vibration modes for a square plate with all edges simply supported and clamped.

1.
Navier
,
C. L. M. H.
, 1823, “
Extrait des recherches sur la flexion des plans elastiques
,” Bull. Sci. Soc. Philomarhique de Paris,
5
, pp.
95
102
.
2.
Levy
,
M.
, 1899, “
Sur L’equilibrie Elastique D’une Plaque Rectangulaire
,” C. R. Acad. Sci.,
129
, pp.
535
539
.
3.
Way
,
S.
, 1934, “
Bending of Circular Plates With Large Deflections
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
627
636
.
4.
Leissa
,
A. W.
, 1973, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
0022-460X,
31
, pp.
257
293
.
5.
Gorman
,
D. J.
, 1976, “
Free Vibration Analysis of Cantilever Plates by the Method of Super-Position
,”
J. Sound Vib.
0022-460X,
49
, pp.
453
467
.
6.
Gorman
,
D. J.
, 1977, “
Free-Vibration Analysis of Rectangular Plates With Clamped-Simply Supported Edge Conditions by the Method of Superposition
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
743
749
.
7.
Pan
,
E.
, 2001, “
Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
608
618
.
8.
Cheng
,
Z.-Q.
, and
Reddy
,
J. N.
, 2003, “
Green’s Functions for Infinite and Semi-Infinite Anisotropic Thin Plates
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
260
267
.
9.
Tong
,
P.
, and
Huang
,
W.
, 2002, “
Large Deflection of Thin Plates in Pressure Sensor Applications
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
785
789
.
10.
Narita
,
Y.
, 2000, “
Combinations for the Free-Vibration Behaviors of Anisotropic Rectangular Plates Under General Edge Conditions
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
568
573
.
11.
Ventsel
,
E.
, and
Krauthammer
,
T.
, 2001,
Thin Plates and Shells Theory, Analysis, and Applications
,
Marcel Dekker
, New York, pp.
284
285
.
12.
Wang
,
Z. X.
, and
Guo
,
D. R.
, 1989,
Special Functions
,
World Scientific
, Singapore, pp.
345
455
.
13.
Zheng
,
Z.
, 1980,
Mechanical Vibration
,
Mechanical Industry Press
, Beijing.
14.
Young
,
D.
, 1950, “
Vibration of Rectangular Plates by the Ritz Method
,”
ASME J. Appl. Mech.
0021-8936,
17
, pp.
448
453
.
15.
Kerboua
,
Y.
,
Lakis
,
A. A.
,
Thomasb
,
M.
, and
Marcouiller
,
L.
, 2007, “
Hybrid Method for Vibration Analysis of Rectangular Plates
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
791
801
.
You do not currently have access to this content.