Governing equations of a compressed rotating rod with clamped–elastically clamped (hinged with a torsional spring) boundary conditions is derived. It is shown that the multiplicity of an eigenvalue of this system can be at most equal to two. The optimality conditions, via Pontryagin’s maximum principle, are derived in the case of bimodal optimization. When these conditions are used the problem of determining the optimal cross-sectional area function is reduced to the solution of a nonlinear boundary value problem. The problem treated here generalizes our earlier results presented in Atanackovic, 1997, Stability Theory of Elastic Rods, World Scientific, River Edge, NJ. The optimal shape of a rod is determined by numerical integration for several values of parameters.

1.
Stodola
,
A.
, 1906,
Steam Turbines
,
D. Van Nostrand Company
, New York.
2.
Bazely
,
N.
, and
Zwahlen
,
B.
, 1968, “
Remarks on the Bifurcation of Solutions of a Nonlinear Eigenvalue Problem
,”
Arch. Ration. Mech. Anal.
0003-9527,
28
,
51
58
.
3.
Parter
,
S. V.
, 1970, “
Nonlinear Eigenvalue Problems for Some Fourth Order Equations: I Maximal Solutions
,”
SIAM J. Math. Anal.
0036-1410,
1
, pp.
437
478
.
4.
Atanackovic
,
T. M.
, 1986, “
Buckling of Rotating Compressed Rods
,”
Acta Mech.
0001-5970,
60
, pp.
49
66
.
5.
Atanackovic
,
T. M.
, 1997, “
On the Rotating Rod With Variable Cross Section
,”
Arch. Appl. Mech.
0939-1533,
67
, pp.
447
456
.
6.
Atanackovic
,
T. M.
, 1997,
Stability Theory of Elastic Rods
,
World Scientific
, River Edge, N.J.
7.
Atanackovic
,
T. M.
, 2001, “
Optimal Shape of a Rotating Rod
,”
J. Appl. Mech.
0021-8936,
68
, pp.
860
864
.
8.
Atanackovic
,
T. M.
, 2004, “
On the Optimal Shape of a Compressed Rotating Rod
,”
Meccanica
0025-6455,
39
, pp.
147
157
.
9.
Spasic
,
D. T.
, and
Atanackovic
,
T. M.
, 2004, “
Bimodal Optimization of a Compressed Rotating Rod
,”
Acta Mech.
0001-5970,
173
, pp.
77
87
.
10.
Leavy
,
R.
, 1990, “
Buckling Optimization of Beams and Plates on Elastic Foundation
,”
J. Eng. Mech.
0733-9399,
116
, pp.
18
34
.
11.
Seyranian
,
A. P.
, 1984, “
On the Lagrange Problem
,”
Mech. Solids
0025-6544,
19
, pp.
100
111
.
12.
Seyranian
,
A. P.
, 1995, “
New Solutions to Lagrange’s Problem
,”
Phys. Dokl.
1063-7753,
40
, pp.
251
253
.
13.
Seyranian
,
A. P.
, and
Privalova
,
O. G.
, 2003, “
The Lagrange Problem on Optimal Column: Old and New Results
,”
Struct. Multidiscip. Optim.
1615-147X,
25
, pp.
393
410
.
14.
Tadjbakhsh
,
I.
, and
Keller
,
J. B.
, 1962, “
Strongest Columns and Isoperimetric Inequalities for Eigenvalues
,”
J. Appl. Mech.
0021-8936,
29
, pp.
159
164
.
15.
Cox
,
S. J.
, and
Overton
,
M. L.
, 1992, “
On the Optimal Design of Columns Against Buckling
,”
SIAM J. Math. Anal.
0036-1410,
23
, pp.
287
325
.
16.
Błachut
,
J.
, and
Życzkowski
,
M.
, 1984, “
Bimodal Optimal Design of Clamped-Clamped Columns Under Creep Conditions
,”
Int. J. Solids Struct.
0020-7683,
20
, pp.
571
577
.
17.
Atanackovic
,
T. M.
, 2006, “
Optimal Shape of Column With Own Weight: Bi and Single Modal Optimization
,”
Meccanica
0025-6455,
41
, pp.
173
196
.
18.
Vujanovic
,
B. D.
, and
Atanackovic
,
T. M.
, 2004,
An Introduction to Modern Variational Techniques in Mechanics and Engineering
,
Birkhäuser
, Boston.
19.
Alekseev
,
V. M.
,
Tihomirov
,
V. M.
, and
Fomin
,
S. V.
, 1979,
Optimal Control
,
Nauka
, Moscow (in Russian).
20.
Sage
,
A. P.
, and
White
,
C. C.
, 1977,
Optimum System Control
,
Prentice–Hall
, Englewood Cliffs, NJ.
21.
Seyranian
,
A. P.
,
Lund
,
E.
, and
Olhoff
,
N.
, 1994, “
Multiple Eigenvalues in Structural Optimization Problems
,”
Struct. Optim.
0934-4373,
8
, pp.
207
227
.
22.
Kirmser
,
P. G.
, and
Hu
,
K.-K.
, 1993, “
The Shape of the Ideal Column Reconsidered
,”
Math. Intell.
0343-6993,
15
, pp.
211
170
.
You do not currently have access to this content.