Like microelectronic circuits, microelectromechanical systems (MEMS) devices are susceptible to damage by electrostatic discharge (ESD). At Sandia National Laboratories, polysilicon electrothermal MEMS actuators have been subjected to ESD pulses to examine that susceptibility. Failures, in the form of cracks at points of high stress concentration, occurred that could not be explained by thermal degradation of the polysilicon caused by excessive heating, or by excessive displacement of the legs of the actuator of the same nature that occur in normal operation. One hypothesis presented in this paper is that the internal magnetic forces between the legs of the actuator, resulting from the ESD-associated high current pulses, might produce vibrations of amplitude sufficient to produce these cracks. However, a dynamic analysis based on simple beam theory indicated that such cracks are unlikely to occur, except under rather extreme conditions. On the other hand, these same current pulses also cause resistive heating of the legs and, therefore, thermally induced compression that can lead to buckling. Buckling stresses, particularly when augmented by magnetic forces, can readily explain failure. Both the magnetic and thermal analyses were performed using the human body model and the machine model of ESD. A justification for ignoring shuttle motion and eddy currents induced in the substrate during the ESD pulse is presented, as well.

1.
Que
,
L.
,
Park
,
J. S.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent–Beam Electrothermal Actuators—Part I: Single Beam and Cascaded Devices
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
247
254
.
2.
Park
,
J. S.
,
Chu
,
L. L.
,
Oliver
,
A. D.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent–beam Electrothermal Actuators—Part II: Linear and Rotary Microengines
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
255
262
.
3.
Walraven
,
J. A.
,
Soden
,
J. M.
,
Tanner
,
D. M.
,
Tangyunyong
,
P.
,
Cole
,
E. I.
, Jr.
,
Anderson
,
R. E.
, and
Irwin
,
L. W.
, 2000, “
Electrostatic Discharge/Electrical Overstress Susceptibility in MEMS: A New Failure Mode
,”
Proc. SPIE
0277-786X,
4180
, pp.
30
39
.
4.
Walraven
,
J. A.
,
Plass
,
R.
,
Baker
,
M. S.
, and
Shaw
,
M. J.
, 2004, “
Failure Analysis of Electrothermal Actuators Subjected to Electrical Overstress (EOS) and Electrostatic Discharge
,”
Proceedings of the 30th International Symposium for Testing and Failure Analysis (ISTFA)
,
Worcester
, MA, Nov. 14–18.
5.
Baker
,
M. S.
,
Plass
,
R. A.
,
Headley
,
T. J.
, and
Walraven
,
J. A.
, 2004, “
Final Report: Compliant Thermo-Mechanical MEMS, Actuators LDRD #52553
,” Sandia National Laboratories, Sandia, NM, Report No. SAND2004-6635.
6.
Pilkey
,
W. D.
, 1997,
Peterson’s Stress Concentration Factors
,
Wiley
, New York, Chap. 3.
7.
Dugger
,
M. T.
,
Boyce
,
B. L.
,
Burchheit
,
T. E.
, and
Prasad
,
S. V.
, 2004, “
Mechanics and Tribology of MEMS Materials
,”
Sandia National Laboratories
, Sandia, Nm, Report No. SAND2004-1319.
9.
National Semiconductor EOS/ESD Information Website, 2007, http://www.national.com/appinfo/eosesdhttp://www.national.com/appinfo/eosesd
10.
Timoshenko
,
S. P.
,
Young
,
D. H.
, and
Weaver
,
W.
, 1974,
Vibration Problems In Engineering
,
4th ed.
,
Wiley
, New York, Chap. 5.
11.
Jensen
,
B. D.
,
et al.
, 2001, “
Interferometry of Actuated Microcantilevers to Determine Material Properties and Test Structure Nonidealities in MEMS
,”
J. Microelectromech. Syst.
1057-7157,
10
(
3
), pp.
336
346
.
12.
Chang
,
T.
, and
Craig
,
R. R
, 1969, “
Normal Modes of Uniform Beams
,”
J. Eng. Mech.
0733-9399,
95
(
EM4
), pp.
1027
1031
.
13.
Tang
,
Y.
, 2003, “
Numerical Evaluation of Uniform Beam Modes
,”
J. Eng. Mech.
0733-9399, Vol.
129
(
12
), pp.
1475
1477
.
14.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
2nd ed.
,
McGraw–Hill
, New York, Chaps. 1 and 2.
15.
Okada
,
Y.
, and
Tokumary
,
Y.
, 1984, “
Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon Between 300 and 1500K
,”
J. Appl. Phys.
0021-8979,
56
(
2
), pp.
314
320
.
16.
Gurvich
,
L. V.
,
Vetyts
,
I. V.
, and
Alcock
,
C. B.
, eds., 1990,
Thermodynamic Properties of Inorganic Substances
,
Hemisphere
, New York, Vol.
2
.
17.
Brandes
,
E. A.
,
Brook
,
G. B.
, and
Smithells
,
C. J.
, 1998,
Smithells Metals Reference Book
,
7th ed.
,
Butterworth–Heinemann
, Boston, MA.
18.
Lott
,
C. D.
,
McLain
,
T. W.
,
Harb
,
J. N.
, and
Howell
,
L. L.
, 2002, “
Modeling the Thermal Behavior of a Surface-Micromachine Linear-Displacement Thermomechanical Microactuator
,”
Sens. Actuators, A
0924-4247,
101
, pp.
239
250
.
19.
Anderson
,
T. L.
, 1995,
Fracture Mechanics: Fundamentals and Applications
,
2nd ed.
,
CRC
, Boca Raton, FL, Chap. 4.
20.
Tegopoulos
,
J. A.
, and
Kiezis
,
E. E.
, 1985,
Eddy Currents in Linear Conducting Media
,
Elsevier
, Amsterdam, The Netherlands.
You do not currently have access to this content.