By means of the Hankel transform and dual-integral equations, the nonlinear response of a penny-shaped dielectric crack with a permittivity $κ0$ in a transversely isotropic piezoelectric ceramic is solved under the applied tensile stress $σzA$ and electric displacement $DzA$. The solution is given through the universal relation, $Dc∕σzA=KD∕KI=MD∕Mσ$, regardless of the electric boundary conditions of the crack, where $Dc$ is the effective electric displacement of the crack medium, and $KD$ and $KI$ are the electric displacement and the stress intensity factors, respectively. The proportional constant $MD∕Mσ$ has been derived and found to have the characteristics: (i) for an impermeable crack it is equal to $DzA∕σzA$; (ii) for a permeable one it is only a function of the ceramic property; and (iii) for a dielectric crack with a finite $κ0$ it depends on the ceramic property, the $κ0$ itself, and the applied $σzA$ and $DzA$. The latter dependence makes the response of the dielectric crack nonlinear. This nonlinear response is found to be further controlled by a critical state $(σc,DzA)$, through which all the $Dc$ versus $σzA$ curves must pass, regardless of the value of $κ0$. When $σzA<σc$, the response of an impermeable crack serves as an upper bound, whereas that of the permeable one serves as the lower bound, and when $σzA>σc$ the situation is exactly reversed. The response of a dielectric crack with any $κ0$ always lies within these bounds. Under a negative $DzA$, our solutions further reveal the existence of a critical $κ*$, given by $κ*=−RDzA$, and a critical $D*$, given by $D*=−κ0∕R$ ($R$ depends only on the ceramic property), such that when $κ0>κ*$ or when $∣DzA∣<∣D*∣$, the effective $Dc$ will still remain positive in spite of the negative $DzA$.

1.
Parton
,
V. Z.
, 1976, “
Fracture Mechanics of Piezoelectric Materials
,”
Acta Astronaut.
0094-5765,
3
, pp.
671
683
.
2.
Deeg
,
W. F.
, 1980, “
The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids
,” Ph.D. dissertation, Stanford University, Stanford, CA.
3.
Pak
,
Y. E.
, 1990, “
Crack Extension Force in a Piezoelectric Material
,”
J. Appl. Mech.
0021-8936,
57
, pp.
647
653
.
4.
Pak
,
Y. E.
, 1992, “
Linear Electro-elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
54
, pp.
79
100
.
5.
Sosa
,
H.
, 1991, “
Plane Problems in Piezoelectric Media with Defects
,”
Int. J. Solids Struct.
0020-7683,
28
, pp.
491
505
.
6.
Sosa
,
H.
, 1992, “
On the Fracture Mechanics of Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
2613
2622
.
7.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
8.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Effect of Electric Field on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract.
0376-9429,
70
, pp.
203
216
.
9.
McMeeking
,
R. M.
, 1989, “
Electrostrictive Stress near Crack-like Flaws
,”
J. Appl. Math.
1110-757X,
40
, pp.
615
627
.
10.
Zhang
,
T.-Y.
, and
Hack
,
J. E.
, 1992, “
Mode III Cracks in Piezoelectric Materials
,”
J. Appl. Phys.
0021-8979,
71
, pp.
5865
5870
.
11.
Zhang
,
T.-Y.
, 1994, “
Effect of Sample Width on the Energy Release Rate and Electric Boundary Conditions along Crack Surfaces in Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
66
, pp.
33
38
.
12.
Dunn
,
M. L.
, 1994, “
The Effect of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solid
,”
Eng. Fract. Mech.
0013-7944,
48
, pp.
25
39
.
13.
Sosa
,
H.
, and
Khutoryansky
,
N.
, 1996, “
New Developments Concerning Piezoelectric Materials with Defects
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
3399
3414
.
14.
Zhang
,
T.-Y.
,
Zhao
,
M.-H.
, and
Tong
,
P.
, 2001, “
Fracture of Piezoelectric Ceramics
,”
0065-2156,
38
, pp.
147
289
.
15.
Li
,
S. F.
, and
Mataga
,
P. A.
, 1996, “
Dynamic Crack Propagation in Piezoelectric Materials. Part I: Electrode Solution
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1799
1830
.
16.
Li
,
S. F.
, and
Mataga
,
P. A.
, 1996, “
Dynamic Crack Propagation in Piezoelectric Materials. Part II: Vacuum
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1831
1866
.
17.
Wang
,
X. D.
, and
Meguid
,
S. A.
, 2000, “
Effect of Electromechanical Coupling on the Dynamic Interaction of Cracks in Piezoelectric Materials
,”
Acta Mech.
0001-5970,
143
, pp.
1
15
.
18.
Li
,
C. Y.
, and
Weng
,
G. J.
, 2002, “
Yoffe-type Moving Crack in a Functionally Graded Piezoelectric Material
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
381
399
.
19.
Parton
,
V. Z.
, and
Kudryavtsev
,
B. A.
, 1988,
Electromagnetoelasticity
,
Gordon and Breach
,
New York
.
20.
Hao
,
T. H.
, and
Shen
,
Z. Y.
, 1994, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
793
802
.
21.
Shindo
,
Y.
,
Tanaka
,
K.
, and
Narita
,
F.
, 1997, “
Singular Stress and Electric Fields of a Piezoelectric Ceramic Strip with a Finite Crack under Longitudinal Shear
,”
Acta Mech.
0001-5970,
120
, pp.
31
45
.
22.
Yang
,
F.
, 2001, “
Fracture Mechanics for a Mode I crack in Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
3813
3830
.
23.
Shindo
,
Y.
,
Watanabe
,
K.
, and
Narita
,
F.
, 2000, “
Electroelastic Analysis of a Piezoelectric Ceramic Strip with a Central Crack
,”
Int. J. Eng. Sci.
0020-7225,
38
, pp.
1
19
.
24.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
, pp.
25
41
.
25.
Xu
,
X.-L.
, and
Rajapakse
,
R. K. N. D.
, 2001, “
On a Plane Crack in Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7643
7658
.
26.
Wang
,
X. D.
, and
Jiang
,
L. Y.
, 2001, “
Fracture Behavior of Cracks in Piezoelectric Media with Electromechanically Coupled Boundary Conditions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
2545
2560
.
27.
Dascalu
,
C.
, and
Homentcovschi
,
D.
, 2002, “
An Intermediate Crack Model for Flaws in Piezoelectric Solids
,”
Acta Mech.
0001-5970,
154
, pp.
85
100
.
28.
Wang
,
B. L.
, and
Mai
,
Y.-W.
, 2003, “
On the Electrical Boundary Conditions on the Crack Surfaces in Piezoelectric Ceramics
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
633
652
.
29.
Zhang
,
T. Y.
, and
Cao
,
C. F.
, 2004, “
Fracture Behaviors of Piezoelectric Materials
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
339
379
.
30.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
31.
Wang
,
B.
, 1992, “
Three-Dimensional Analysis of a Flat Elliptical Crack in a Piezoelectric Material
,”
Int. J. Eng. Sci.
0020-7225,
30
, pp.
781
791
.
32.
Kogan
,
L.
,
Hui
,
C.-Y.
, and
Molkov
,
V.
, 1996, “
Stress and Induced Field of a Spheroidal Inclusion or a Penny-Shaped Crack in a Transversely Isotropic Piezoelectric Material
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2719
2737
.
33.
Huang
,
J. H.
, 1997, “
A Fracture Criterion of a Penny-shaped Crack in Transversely Isotropic Piezoelectric Media
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
2631
2644
.
34.
Chiang
,
C. R.
, and
Weng
,
G. J.
, 2005, “
The Nature of Stress and Electric-displacement Concentration around a Strongly Oblate Cavity in a Transversely Isotropic Piezoelectric Material
,”
Int. J. Fract.
0376-9429,
134
, pp.
319
337
.
35.
Dunn
,
M. L.
, and
Wienecke
,
H. A.
, 1997, “
Inclusions and Inhomogeneity in Transversely Isotropic Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
3571
3582
.
36.
Chen
,
W. Q.
, and
Shioya
,
T.
, 1999, “
Fundamental Solution of a Penny-shaped Crack in a Piezoelectric Medium
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
1459
1475
.
37.
Chen
,
W. Q.
, and
Shioya
,
T.
, 1999, “
Complete and Exact Solutions of a Penny-Shaped Crack in a Piezoelectric Solid: Antisymmetric Shear Loadings
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2603
2619
.
38.
Fabricant
,
V. I.
, 1989,
Application of Potential Theory in Mechanics: A Selection of New Resutls
,
,
Dordrecht, The Netherlands
.
39.
Ding
,
H. J.
,
Chen
,
B.
, and
Liang
,
J.
, 1997, “
On the Green’s Function for Two-phase Transversely Isotropic Piezoelectric Medi
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
3041
3057
.
40.
Zhao
,
M. H.
,
Shen
,
Y. P.
,
Liu
,
G. N.
, and
Liu
,
Y. J.
, 1999, “
Crack Analysis in Semi-infinite Transversely Isotropic Piezoelectric Solid II. Penny-shaped Crack near the Surface
,”
Theor. Appl. Fract. Mech.
0167-8442,
32
, pp.
233
240
.
41.
Yang
,
J. H.
, and
Lee
,
K. Y.
, 2001, “
,”
Acta Mech.
0001-5970,
148
, pp.
187
197
.
42.
Yang
,
J. H.
, and
Lee
,
K. Y.
, 2002, “
Three-Dimensional Non-Aaxisymmetric Behavior of a Penny-Shaped Crack in a Piezoelectric Strip Subjected to In-Plane Loads
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
223
237
.
43.
Lin
,
S.
,
Narita
,
F.
, and
Shindo
,
Y.
, 2003, “
Electroelastic Analysis of a Penny-shaped Crack in a Piezoelectric Ceramic under Mode I Loading
,”
Mech. Res. Commun.
0093-6413,
30
, pp.
371
386
.
44.
Li
,
X. F.
, and
Lee
,
K. Y.
, 2004, “
Effects of Electric Field on Crack Growth for a Penny-shaped Dielectric Crack in a Piezoelectric Layer
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2079
2100
.
45.
Chen
,
W. Q.
, and
Lim
,
C. W.
, 2005, “
3D Point Force Solution for a Permeable Penny-Shaped Crack Embedded in an Infinite Transversely Isotropic Piezoelectric Medium
,”
Int. J. Fract.
0376-9429,
131
, pp.
231
246
.
46.
Hwang
,
S. C.
,
Lynch
,
C. S.
, and
McMeeking
,
R. M.
, 1995, “
Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model
,”
Acta Metall. Mater.
0956-7151,
43
, pp.
2073
2084
.
47.
Li
,
J.
, and
Weng
,
G. J.
, 1999, “
A Theory of Domain Switch for the Nonlinear Behavior of Ferroelectrics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3493
3511
.
48.
Li
,
W. F.
, and
Weng
,
G. J.
, 2002, “
A Theory of Ferroelectric Hysteresis with a Superimposed Stress
,”
J. Appl. Phys.
0021-8979,
91
, pp.
3806
3815
.
49.
Ikeda
,
T.
, 1996,
Fundamentals of Piezoelectricity
,
Oxford University Press
,
Oxford, UK
.
50.
Nye
,
J. F.
, 1979,
Physical Properties of Crystals
,
Oxford University Press
,
Oxford, UK
.
51.
Sneddon
,
I. N.
, 1951,
Fourier Transforms
,
McGraw-Hill
,
New York
.
52.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
3
, pp.
625
646
.
53.
Stroh
,
A. N.
, 1962, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
0022-2488,
41
, pp.
77
103
.
54.
Lekhnitskii
,
S. G.
, 1963,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco, CA
.
55.
Chiang
,
C. R.
, 2004, “
Some Crack Problems in Transversely Isotropic Solids
,”
Acta Mech.
0001-5970,
170
, pp.
1
9
.
56.
Kassir
,
M. K.
, and
Sih
,
G. C.
, 1975,
Three-Dimensional Crack Problems
,
Noordoff
,
Leyden
,
The Netherlands
.
57.
McMeeking
,
R. M.
, 1999, “
Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
,”
Eng. Fract. Mech.
0013-7944,
64
, pp.
217
244
.
58.
Dunn
,
M. L.
, and
Taya
,
M.
, 1993, “
An Analysis of Piezoelectric Composite Materials Containing Ellipsoidal Inhomogeneities
,”
Proc. R. Soc. London, Ser. A
1364-5021,
443
, pp.
265
287
.