Discontinuous Galerkin methods are commonly derived by seeking a weak statement of the governing differential equations via a weighted-average approach allowing for discontinuous fields at the element interfaces of the discretization. In order to ensure consistency and stability of the formulation, this approach requires the definition of a numerical flux and a stabilization term. Discontinuous Galerkin methods may also be formulated from a linear combination of the governing and compatibility equations weighted by suitable operators. A third approach based on a variational statement of a generalized energy functional has been proposed recently for finite elasticity. This alternative approach naturally leads to an expression of the numerical flux and the stabilization terms in the context of large deformation mechanics problems. This paper compares these three approaches and establishes the conditions under which identical formulations are obtained.

1.
Cockburn
,
B.
,
Hou
,
S.
, and
Shu
,
C. W.
, 1990, “
TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case
,”
Math. Comput.
0025-5718,
54
, pp.
545
581
.
2.
Cockburn
,
B.
, and
Shu
,
C. W.
, 1998, “
The Local Discontinuous Galerkin Method for Time Dependent Convection-Diffusion Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
36
(
6
), pp.
2440
2483
.
3.
Cockburn
,
B.
, 2003, “
Discontinuous Galerkin Methods for Convection-Dominated Problems
,” in
High-Order Methods for Computational Physics
,
A.
Quaterroni
, ed.,
Lecture Notes in Computational Sciences and Engineering
Vol.
11
,
Springer
,
Berlin
, pp.
69
213
.
4.
Engel
,
G.
,
Garikipati
,
K.
,
Hughes
,
T. J. R.
,
Larson
,
M. G.
,
Mazzei
,
L.
, and
Taylor
,
R. L.
, 2002, “
Continuous/Discontinuous Finite Element Approximations of Fourth-Order Elliptic Problems in Structural and Continuum Mechanics with Applications to Thin Beams and Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
3669
3750
.
5.
Lew
,
A.
,
Neff
,
P.
,
Sulsky
,
D.
, and
Ortiz
,
M.
, 2004, “
Optimal BV Estimates for a Discontinuous Galerkin Method for Linear Elasticity
,”
Appl. Math. Research eXpress
,
3
, pp.
73
106
.
6.
Noels
,
L.
, and
Radovitzky
,
R.
, 2006, “
A General Discontinuous Galerkin Method for Finite Hyperelasticity. Formulation and Numerical Applications
,”
Int. J. Numer. Methods Eng.
0029-5981,
68
, pp.
64
97
.
7.
Ten Eyck
,
A.
, and
Lew
,
A.
, 2006, “
Discontinuous Galerkin Methods for Non-Linear Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
67
, pp.
1204
1243
.
8.
Güzey
,
S.
,
Stolarski
,
H. K.
,
Cockburn
,
B.
, and
Tamma
,
K. K.
, 2006, “
Design and Development of a Disontinuous Galerkin Method for Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3528
3548
.
9.
Nitsche
,
J. A.
, 1971, “
Uber ein Variationsprinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die Keinen Randbedingungen Uneworfen Sind
,”
Abh. Math. Semin. Univ. Hambg.
0025-5858,
36
, pp.
9
15
.
10.
Arnold
,
D. N.
,
Brezzi
,
F.
,
Cockburn
,
B.
, and
Marini
,
L. D.
, 2002, “
Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
39
(
5
), pp.
1749
1779
.
11.
Brezzi
,
F.
,
Manzini
,
G.
,
Marini
,
D.
,
Pietra
,
P.
, and
Russo
,
A.
, 2000, “
Discontinuous Galerkin Approximations for Elliptic Problems
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
16
(
4
), pp.
365
378
.
12.
Bassi
,
F.
, and
Rebay
,
S.
, 1997, “
A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
131
, pp.
267
279
.
13.
Brezzi
,
F.
,
Cockburn
,
B.
,
Marini
,
L. D.
, and
Süli
,
E.
, 2006, “
Stabilization Mechanisms in Discontinuous Galerkin Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
25
26
.
14.
Fraijs de Veubeke
,
B. M.
, 1951, “
Diffusion des Inconnues Hyperstatiques dans les Voilures à Longerons Couplés
,”
Bulletins du Service Technique de L’Aéronautique
Vol.
24
,
Marcel Hayez
,
Brussels, Belgium
.
15.
Hu
,
H. C.
, 1955, “
On Some Variational Methods on the Theory of Elasticity and Theory of Plasticity
,”
Sci. Sin.
0582-236X,
4
, pp.
33
54
.
16.
Washizu
,
K.
, 1955, “
On the Variational Principles of Elasticity and Plasticity
,” Technical Report No. 25–18. Aeroelastic and Structures Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA.
17.
Cockburn
,
B.
, 2003, “
Discontinuous Galerkin Methods
,”
Z. Angew. Math. Mech.
0044-2267,
83
(
11
), pp.
731
754
.
You do not currently have access to this content.