An analytic technique, namely the homotopy analysis method, is applied to solve the Navier–Stokes equations governing unsteady viscous flows due to a suddenly stretching surface in a rotating fluid. Unlike perturbation methods, the current approach does not depend upon any small parameters at all. Besides contrary to all other analytic techniques, it provides us with a simple way to ensure the convergence of solution series. In contrast to perturbation approximations which have about 40% average errors for the considered problem, our series solutions agree well with numerical results in the whole time region 0t<+. Explicit analytic expressions of the skin friction coefficients are given, which agree well with numerical results in the whole time region 0t<+. This analytic approach can be applied to solve some complicated three-dimensional unsteady viscous flows governed by the Navier–Stokes equations.

1.
Wang
,
C. Y.
, 1988, “
Stretching a Surface in a Roating Fluid
,”
ZAMP
0044-2275,
39
, pp.
177
185
.
2.
Wang
,
C. Y.
,
Dut
,
Q.
,
Miklavcic
,
M.
, and
Chang
,
C. C.
, 1997, “
Impulsive Stretching of a Surface in a Viscous Fluid
,”
SIAM J. Appl. Math.
0036-1399,
57
, pp.
1
14
.
3.
Seshadri
,
R.
,
Sreeshylan
,
N.
, and
Nath
,
G.
, 2002, “
Unsteady Mixed Convection Flow in the Stagation Region a Heated Vertical Plate due to Impulsive Motion
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1345
1352
.
4.
Nazar
,
N.
,
Amin
,
N.
, and
Pop
,
I.
, 2002, “
Unsteady Boundary Layer Flow due to Stretching Surface in a Rotating Fluid
,”
Mech. Res. Commun.
0093-6413,
31
, pp.
121
128
.
5.
Cebeci
,
T.
, and
Bradshaw
,
P.
, 1984,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer
, New York.
6.
Liao
,
S. J.
, 1992, “
The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems
,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
7.
Liao
,
S. J.
, 2003,
Beyond Perturbation: Introduction to Homotopy Analysis Method
,
Chapman & Hall/CRC Press
, Boca Raton, FL.
8.
Liao
,
S. J.
, 1999, “
An Explicit, Totally Analytic Approximation of Blasius Viscous Flow Problems
,”
Int. J. Non-Linear Mech.
0020-7462.,
34
(
4
), pp
759
778
.
9.
Liao
,
S. J.
, 2004, “
On the Homotopy Analysis Method for Nonlinear Problems
,”
Appl. Math. Comput.
0096-3003,
147
, pp.
499
513
.
10.
Liao
,
S. J.
, 2006, “
Series Solutions of Unsteady Boundary-Layer Flows Over a Stretching Flat Plate
,”
Stud. Appl. Math.
0022-2526,
117
(
3
), pp.
2529
2539
.
11.
Liao
,
S. J.
, and
Magyari
,
E.
, 2006, “
Exponentially Decaying Boundary Layers as Limiting Cases of Families of Algebraically Decaying Ones
,”
Z. Angew. Math. Phys.
0044-2275,
57
(
5
), pp.
777
792
.
12.
Allan
,
F. M.
, 2007, “
Derivation of the Adomian Decomposition Method Using the Homotopy Analysis Method
,”
Appl. Math. Comput.
0096-3003, in press.
13.
Hayat
,
T.
, and
Sajid
,
M.
, 2007, “
On Analytic Solution for Thin Film Flow of a Forth Grade Fluid Down a Vertical Cylinder
,”
Phys. Lett. A
0375-9601
361
, pp.
316
322
.
14.
Sajid
,
M.
,
Hayat
,
T.
, and
Asghar
,
S.
, 2007, “
Comparison Between the HAM and HPM Solutions of Tin Film Flows of Non-Newtonian Fluids on a Moving Belt
,”
Nonlinear Dyn.
0924-090X, in press.
15.
Abbasbandy
,
S.
, 2006, “
The Application of the Homotopy Analysis Method to Nonlinear Equations Arising in Heat Transfer
,”
Phys. Lett. A
0375-9601,
360
, pp.
109
113
.
16.
Abbasbandy
,
S.
, 2007, “
The Application of the Homotopy Analysis Method to Solve a Generalized Hirota–Satsuma Coupled KdV Equation
,”
Phys. Lett. A
0375-9601,
361
, pp.
478
483
.
17.
He
,
J. H.
, 1999, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
, pp.
257
262
.
18.
Liao
,
S. J.
, 1999, “
A Uniformly Valid Analytic Solution of 2D Viscous Flow Past a Semi-infinite Flat Plate
,”
J. Fluid Mech.
0022-1120,
385
, pp.
101
128
.
19.
Liao
,
S. J.
, and
Campo
,
A.
, 2002, “
Analytic Solutions of the Temperature Distribution in Blasius Viscous Flow Problems
,”
J. Fluid Mech.
0022-1120,
453
, pp.
411
425
.
20.
Liao
,
S. J.
, 2003, “
On the Analytic Solution of Magnetohydrodynamic Flows of Non-Newtonian Fluids Over a Stretching Sheet
,”
J. Fluid Mech.
0022-1120,
488
, pp.
189
212
.
21.
Song
,
Y.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
, 2006, “
On the Homotopy Analysis Method for Solving the Boundary Layer Flow Problem Over a Stretching Surface With Suction and Injection
,”
Journal of University of Science and Technology Beijiing
,
28
, pp.
782
784
, in Chinese.
22.
Shi
,
Y. R.
,
Xu
,
J. X.
, and
Wu
,
Z. X.
, (2006), “
Application of the Homotopy Analysis Method to Solving Nonlinear Evaluation Equations
,”
Acta Phys. Sin.
1000-3290,
55
(
4
), pp.
1555
1560
.
23.
Asghar
,
S.
,
Gulzar
,
M. M.
, and
Ayub
,
M.
, 2006, “
Effect of Partial Slip on Flow of a Third Grade Fluid
,”
Acta Mech. Sin.
0459-1879,
22
, pp.
195
198
.
24.
Hayat
,
T.
, and
Khan
,
M.
, 2005, “
Homotopy Solutions for a Generalized Second Grade Fluid Past a Porous Plate
,”
Nonlinear Dyn.
0924-090X,
42
, pp.
395
405
.
25.
Zhu
,
S. P.
, 2006, “
A Closed-Form Analytical Solution for the Valuation of Convertible Bonds With Constant Dividend Yield
,”
ANZIAM J.
1445-8735,
47
, pp.
477
494
.
26.
Zhu
,
S. P.
, 2006, “
An Exact and Explicit Solution for the Valuation of American Put Options
,”
Quant. Finance
1469-7688,
6
, pp.
229
242
.
27.
Liao
,
S. J.
,
Su
,
J.
, and
Chwang
,
A. T.
, 2006, “
Series Solutions for a Nonlinear Model of Combined Convective and Radiative Cooling of a Spherical Body
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2437
2445
.
28.
Williams
,
J. C.
, and
Rhyne
,
T. H.
, 1980, “
Boundary Layer Development on a Wadge Impulsively Set into Motion
,”
SIAM J. Appl. Math.
0036-1399,
38
, pp.
215
224
.
You do not currently have access to this content.