Why do experiments detect Cosserat-elastic effects for porous, but not for stiff-particle-reinforced, materials? Does homogenization of a heterogeneous Cauchy-elastic material lead to micropolar (Cosserat) effects, and if so, is this true for every type of heterogeneity? Can homogenization determine micropolar elastic constants? If so, is the homogeneous (effective) Cosserat material determined in this way a more accurate representation of composite material response than the usual effective Cauchy material? Direct answers to these questions are provided in this paper for both two- (2D) and three-dimensional (3D) deformations, wherein we derive closed-form formulae for Cosserat moduli via homogenization of a dilute suspension of elastic spherical inclusions in 3D (and circular cylindrical inclusions in 2D) embedded in an isotropic elastic matrix. It is shown that the characteristic length for a homogeneous Cosserat material that best mimics the heterogeneous Cauchy material can be derived (resulting in surprisingly simple formulae) when the inclusions are less stiff than the matrix, but when these are equal to or stiffer than the matrix, Cosserat effects are shown to be excluded. These analytical results explain published experimental findings, correct, resolve and extend prior contradictory theoretical (mainly numerical and limited to two-dimensional deformations) investigations, and provide both a general methodology and specific results for determination of simple higher-order homogeneous effective materials that more accurately represent heterogeneous material response under general loading conditions. In particular, it is shown that no standard (Cauchy) homogenized material can accurately represent the response of a heterogeneous material subjected to a uniform plus linearly varying applied traction, while a homogenized Cosserat material can do so (when inclusions are less stiff than the matrix).

1.
Lakes
,
R. S.
, 1983, “
Size Effects and Micromechanics of a Porous Solid
,”
J. Mater. Sci.
0022-2461,
18
, pp.
2572
2581
.
2.
Lakes
,
R. S.
, 1986, “
Experimental Microelasticity of Two Porous Solids
,”
Int. J. Solids Struct.
0020-7683,
22
, pp.
55
63
.
3.
Lakes
,
R. S.
, 1995, “
Experimental Methods for Study of Cosserat Elastic Solids and Other Generalized Continua
,”
Continuum Models for Materials with Micro-Structure
,
H. B.
Muhlhaus
, ed.,
Wiley
,
New York
, pp.
1
22
.
4.
Yang
,
J. F. C.
, and
Lakes
,
R. S.
, 1981, “
Transient Study of Couple Stress in Compact Bone: Torsion
,”
J. Biomech. Eng.
0148-0731,
103
, pp.
275
279
.
5.
Yang
,
J. F. C.
, and
Lakes
,
R. S.
, 1982, “
Experimental Study of Micropolar and Couple Stress Elasticity in Bone in Bending
,”
J. Biomech.
0021-9290,
15
, pp.
91
98
.
6.
Gauthier
,
R. D.
, and
Jahsman
,
W. E.
, 1975, “
A Quest for Micropolar Elastic Constants
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
369
374
.
7.
Gauthier
,
R. D.
, 1982, “
Experimental Investigation on Micropolar Media
,”
Mechanics of Micropolar Media
,
O.
Brulin
and
R. K. T.
Hsieh
, eds.,
CISM Lecture Notes, World Scientific
,
Singapore
, pp.
395
463
.
8.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
9.
Hashin
,
Z.
, 1959, “
The Moduli of an Elastic Solid Containing Spherical Particles of Another Elastic Material
,”
Non-Homogeneity in Elasticity and Plasticity
,
W.
Olszak
, ed.,
Pergamon
,
New York
, pp.
463
478
.
10.
Hashin
,
Z.
, and
Rosen
,
W. B.
, 1964, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
J. Appl. Mech.
0021-8936,
31
, pp.
223
232
.
11.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen, Holland
.
12.
Sendeckyj
,
G. P.
, 1970, “
Elastic Inclusion Problems in Plane Elastostatics
,”
Int. J. Solids Struct.
0020-7683,
6
, pp.
1535
1543
.
13.
Sen
,
B.
, 1933, “
On the Concentration of Stresses Due to a Small Spherical Cavity in a Uniform Beam Bent by Terminal Couples
,”
Bull. Calcutta Math. Soc.
0008-0659,
25
, pp.
107
114
.
14.
Das
,
S. C.
, 1953, “
On the Stresses Due to a Small Spherical Inclusion in a Uniform Beam Under Constant Bending Moment
,”
Bull. Calcutta Math. Soc.
0008-0659,
45
, pp.
55
63
.
15.
Koiter
,
W. T.
, 1964, “
Couple-Stresses in the Theory of Elasticity, Parts I and II
,”
Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci.
0023-3366,
67
, pp.
17
44
.
16.
Nowacki
,
W.
, 1986,
Theory of Asymmetric Elasticity
,
Pergamon
,
Oxford
.
17.
Berglund
,
K.
, 1982, “
Structural Models of Micropolar Media
,”
Mechanics of Micropolar Media (CISM Lecture Notes)
,
O.
Brulin
and
R. K. T.
Hsieh
, eds.,
World Scientific
,
Singapore
, pp.
35
86
.
18.
Dean
,
D. L.
, and
Urgate
,
C. P.
, 1968, “
Field Solutions for Two-Dimensional Frameworks
Int. J. Mech. Sci.
0020-7403,
10
, pp.
315
339
.
19.
Bažant
,
Z. P.
, and
Christensen
,
M.
, 1972, “
Analogy Between Micropolar Continuum and Grid Frameworks Under Initial Stress
,”
Int. J. Solids Struct.
0020-7683,
8
, pp.
327
346
.
20.
Banks
,
C. B.
, and
Sokolowski
,
U.
, 1968, “
On Certain Two-Dimensional Applications of Couple-Stress Theory
,”
Int. J. Solids Struct.
0020-7683,
4
, pp.
15
29
.
21.
Wang
,
X. L.
, and
Stronge
,
W. J.
, 1999, “
Micropolar Theory for Two-Dimensional Stresses in Elastic Honeycomb
,”
Proc. R. Soc. London, Ser. A
1364-5021,
445
, pp.
2091
2116
.
22.
Achenbach
,
J. D.
, and
Herrmann
,
G.
, 1968, “
Dispersion of Free Harmonic Waves in Fibre-Reinforced Composites
,”
AIAA J.
0001-1452,
6
, pp.
1832
1836
.
23.
Beran
,
M. J.
, and
McCoy
,
J. J.
, 1970, “
Mean Field Variations in a Statistical Sample of Heterogeneous Linearly Elastic Solids
,”
Int. J. Solids Struct.
0020-7683,
6
, pp.
1035
1054
.
24.
Forest
,
S.
, 1998, “
Mechanics of Generalized Continua: Construction by Homogenization
,”
J. Phys. IV
1155-4339,
8
, pp.
39
48
.
25.
Ostoja-Starzewski
,
M.
,
Boccara
,
S.
, and
Jasiuk
,
I.
, 1999, “
Couple-Stress Moduli and Characteristic Length of Composite Materials
,”
Mech. Res. Commun.
0093-6413,
26
, pp.
387
397
.
26.
Bouyge
,
F.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
, 2001, “
A Micromechanically Based Couple-Stress Model of an Elastic Two-Phase Composite
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
1721
1735
.
This content is only available via PDF.
You do not currently have access to this content.