Two-fluid models are central to the simulation of transport processes in two-phase homogenized systems. Even though this physical model has been widely accepted, an inherently nonhyperbolic and nonconservative ill-posed problem arises from the mathematical point of view. It has been demonstrated that this drawback occurs even for a very simplified model, i.e., an inviscid model with no interfacial terms. Much effort has been made to remedy this anomaly and in the literature two different types of approaches can be found. On one hand, extra terms with physical origin are added to model the interphase interaction, but even though this methodology seems to be realistic, several extra parameters arise from each added term with the associated difficulty in their estimation. On the other hand, mathematical based-work has been done to find a way to remove the complex eigenvalues obtained with two-fluid model equations. Preconditioned systems, characterized as a projection of the complex eigenvalues over the real axis, may be one of the choices. The aim of this paper is to introduce a simple and novel mathematical strategy based on the application of a preconditioning mass matrix that circumvents the drawback caused by the nonhyperbolic behavior of the original model. Although the mass and momentum conservation equations are modified, the target of this methodology is to present another way to reach a steady-state solution (using a time marching scheme), greatly valued by researchers in industrial process design. Attaining this goal is possible because only the temporal term is affected by the preconditioner. The obtained matrix has two parameters that correct the nonhyperbolic behavior of the model: the first one modifies the eigenvalues removing their imaginary part and the second one recovers the real part of the original eigenvalues. Besides the theoretical development of the preconditioning matrix, several numerical results are presented to show the validity of the method.

1.
Ishii
,
M.
, 1975,
Thermofluid Dynamic Theory of Two-Phase Flow
,
Eyrolles
,
Paris
.
2.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
3.
Kothe
,
D. B.
, and
Mjolsness
,
R. C.
, 1992, “
RIPPLE: A New Model for Incompressible Flows With Free Surfaces
,”
AIAA J.
0001-1452,
30
, pp.
2694
2700
.
4.
Kothe
,
D. B.
,
Rider
,
W. J.
,
Mosso
,
S. J.
,
Brock
,
J. I.
, and
Hochstein
,
J. S.
, 1996, “
Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions
,” Technical Report AIAA 96-0859, AIAA.
5.
Richards
,
J. R.
,
Beris
,
A. N.
, and
Lenho
,
A. M.
, 1995, “
Drop Formation in Liquid-Liquid Systems Before and After Jetting
,”
Phys. Fluids
1070-6631,
7
, pp.
2617
2630
.
6.
Rider
,
W. J.
,
Kothe
,
D. B.
,
Mosso
,
S. J.
,
Cerutti
,
J.
, and
Hochstein
,
J. S.
, 1995, “
Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions
,” Technical Report AIAA 95-0699, AIAA.
7.
Rider
,
W. J.
, and
Kothe
,
D. B.
, 1998, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
0021-9991,
141
, pp.
112
152
.
8.
Juric
,
D.
, and
Tryggvason
,
G.
, 1998, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
387
410
.
9.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
, 1992, “
A Front-Tracking Method for Viscous Incompressible Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
10.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
, 1999, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.
0021-9991,
152
(
2
) pp.
457
492
.
11.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Fronts Propagating With Curvature Dependent Speed: Algorithm Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
12.
Osher
,
S.
, and
Fedkiw
,
R. P.
, 2001, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
0021-9991,
169
, pp.
463
502
.
13.
Sussman
,
M.
, and
Smereka
,
P.
, 1997, “
Axisymmetric Free Boundary Problems
,”
J. Fluid Mech.
0022-1120,
341
, pp.
269
294
.
14.
Anderson
,
D. M.
,
McFadden
,
G. B.
, and
Wheeler
,
A. A.
, 1998, “
Diffuse Interface Methods in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
139
165
.
15.
Jacqmin
,
D.
, 1999, “
Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
0021-9991,
155
, pp.
96
127
.
16.
Lowengrub
,
J.
, and
Truskinovsky
,
L.
, 1998, “
Quasi-Incompressible Cahn-Hilliard Fluids and Topological Transitions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
454
, pp.
2617
2654
.
17.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluids With A Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
18.
Drew
,
D. A.
, and
Passman
,
S. L.
, 1998,
Theory of Multicomponent Fluids
,
Applied Mathematical Sciences
,
Springer
,
New York
, Vol.
135
.
19.
Keyfitz
,
B. L.
, 2000, “
Mathematical Properties of Nonhyperbolic Models for Incompressible Two-Phase Flow
,”
Proceedings of the Fourth International Conference on Multiphase Flow
, New Orleans (report).
20.
Joseph
,
D. D.
, and
Saut
,
J. C.
, 1990, “
Short Wave Instabilities and Ill Posed Initial Value Problems
,”
Journal of Theoretical and Computational Fluid Mechanics
,
1
, pp.
191
227
.
21.
Méndez
,
C. G.
,
Nigro
,
N.
, and
Cardona
,
A.
, 2005, “
Drag and Non-Drag Force Influences in Numerical Simulations of Metallurgical Ladles
,”
J. Mater. Process. Technol.
0924-0136,
160
, pp.
296
305
.
22.
Lahey
,
R. T.
, Jr.
,
Yin
,
J.
, and
Tiwari
,
P.
, 2005, “
Analysis of Void Wave Propagation and Sonic Velocity Using a Two-Fluid Model
,”
Multiphase Sci. Technol.
0276-1459,
17
, pp.
293
320
.
23.
Chung
,
M.
,
Chang
,
K.
, and
Lee
,
S.
, 2002, “
Numerical Solution of Hyperbolic Two-Fluid Two-Phase Flow Model With Non-Reflecting Boundary Conditions
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
789
803
.
24.
Micaelli
,
J. C.
, 1988,
Document Syntheses CATHARE
(CATHARE An Advanced Best-Estimate Code for PWR Safety Analysis), SETh/LEML-EM/88-129, Grenoble Cedex.
25.
Bestion
,
D.
, 1990, “
The Physical Closure Laws in CATHARE Code
,”
Nucl. Eng. Des.
0029-5493,
124
,
229
245
.
26.
Coquel
,
F.
, Gallouët, T.,
Hérard
,
J.
, and
Seguin
,
N.
, 2002, “
Closure Laws for a Two-Fluid Two-Pressure Model
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
334
, pp.
927
932
.
27.
Lee
,
S.
,
Chang
,
K.
, and
Kim
,
K.
, 1998, “
Pressure Wave Speeds From the Characteristics of Two Fluids, Two-Phase Hyperbolic Equation System
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
855
866
.
28.
Pokharna
,
H.
,
Mori
,
M.
, and
Ransom
,
V. H.
, 1997, “
Regularization of Two-Phase Flow Models: A Comparison of Numerical and Differential Approaches
,”
J. Comput. Phys.
0021-9991,
134
, pp.
282
295
.
29.
Städtke
,
H.
,
Franchello
,
G.
, and
Worth
,
B.
, 1997, “
Numerical Simulation of Multi-Dimensional Two-Phase Flow Based on Flux Vector Splitting
,”
Nucl. Eng. Des.
0029-5493,
177
, pp.
199
213
.
30.
Städtke
,
H.
, and
Holtbecker
,
R.
, 1992, “
Hyperbolic Model for One-Dimensional Inhomogeneous Two-Phase Flow
,”
Proceedings 29th Meeting of European Two-Phase Flow Group
,
Stockholm, Sweden
, June 2–3.
31.
Anderson
,
A.
, and
York
,
J.
, 1999, “
Fixing Einstein’s Equations
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
4384
4387
.
32.
Reula
,
O.
, 2004, “
Strongly Hyperbolic Systems
,” General Relativity and Quantum Cosmology, e-print 0403007.
33.
Gundlach
,
C.
, and
Martin-García
,
J.
, 2005, “
Hyperbolicity of Second Order in Space Systems of Evolution Equations
,” General Relativity and Quantum Cosmology, e-print 0506037.
34.
Jones
,
A. V.
, and
Prosperetti
,
A.
, 1985, “
On the Stability of First-Order Differential Models for Two-Phase Flow Prediction
,”
Int. J. Multiphase Flow
0301-9322,
11
, pp.
133
148
.
35.
Zhang
,
D. Z.
, and
Prosperetti
,
A.
, 1994, “
Ensemble Phase Averaged Equations for Bubbly Flows
,”
Phys. Fluids
1070-6631,
6
, pp.
2956
2970
.
36.
Lahey
,
R. T.
, Jr.
, and
Drew
,
D. A.
, 1988, “
The Three-Dimensional Time and Volume Averaged Conservation Equations of Two-Phase Flows
,”
Adv. Nucl. Sci. Technol
,
20
, pp.
1
69
.
37.
Ishii
,
M.
, and
Zuber
,
N.
, 1979, “
Relative Motion and Interfacial Drag Coefficient in Dispersed Two-Phase Flow of Bubbles, Drops and Particles
,”
AIChE J.
0001-1541,
25
, pp.
843
855
.
38.
Chorin
,
A. J.
, 1967, “
A Numerical Method for Solving Incompressible Viscous Problems
,”
J. Comput. Phys.
0021-9991,
2
, pp.
12
26
.
39.
Turkel
,
E.
, 1999, “
Preconditioning Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
385
416
.
40.
Ransom
,
V. H.
,
et al.
, 1985,
RELAP5/MOD2 Code Manual, 1, Code 2, Structure System Models, and Solution Methods
, NUREG/CR-4312.
41.
Shieh
,
A. S.
,
Ransom
,
V. H.
, and
Krishnamurthy
,
R.
, 1994,
RELAP5/MOD3 Code Manual, Validation of Numerical Techniques in RELAP5/MOD3.0
, NUREG/CR-5535, Vol.
6
.
42.
Coquel
,
F.
,
Amine
,
K. El.
,
Godlewski
,
E.
,
Perthame
,
B.
, and
Rascle
,
P.
, 1997, “
A Numerical Method Using Upwind Schemes for the Resolution of Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
136
, pp.
272
288
.
43.
Niu
,
Y. Y.
, 2001, “
Advection Upwinding Splitting Method to Solve a Compressible Two-Fluid Model
,”
Int. J. Numer. Methods Fluids
0271-2091,
36
, pp.
351
371
.
44.
Trapp
,
J. A.
, and
Riemke
,
R. A.
, 1986, “
A Nearly-Implicit Hydrodynamic Numerical Scheme for Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
66
, pp.
62
82
.
45.
AEA Technology, 2004,
User Manual to CFX Version 5.7.
,
AEA Technology plc
,
Harwell, UK
.
You do not currently have access to this content.