In the present study, the fractal theory is applied to modify the conventional model (the Greenwood and Williamson model) established in the statistical form for the microcontacts of two contact surfaces. The mean radius of curvature (R) and the density of asperities (η) are no longer taken as constants, but taken as variables as functions of the related parameters including the fractal dimension (D), the topothesy (G), and the mean separation of two contact surfaces. The fractal dimension and the topothesy varied by differing the mean separation of two contact surfaces are completely obtained from the theoretical model. Then the mean radius of curvature and the density of asperities are also varied by differing the mean separation. A numerical scheme is thus developed to determine the convergent values of the fractal dimension and topothesy corresponding to a given mean separation. The topographies of a surface obtained from the theoretical prediction of different separations show the probability density function of asperity heights to be no longer the Gaussian distribution. Both the fractal dimension and the topothesy are elevated by increasing the mean separation. The density of asperities is reduced by decreasing the mean separation. The contact load and the total contact area results predicted by variable D, G*, and η as well as non-Gaussian distribution are always higher than those forecast with constant D, G*, η, and Gaussian distribution.

1.
Polycarpou
,
A. A.
, and
Etsion
,
I.
, 2000, “
A Model for the Static Sealing Performance of Compliant Metallic Gas Seal Including Surface Roughness and Rarefraction Effects
,”
STLE Tribol. Trans.
1040-2004,
43
(
2
), pp.
237
244
.
2.
Kogut
,
L.
, and
Etsion
,
I.
, 2000, “
Electrical Conductivity and Friction Force Estimation in Compliant Electrical Connectors
,”
Tribol. Trans.
1040-2004,
43
, pp.
816
822
.
3.
Jeng
,
Y. R.
, and
Horng
,
J. H.
, 2001, “
A Microcontact Approach for Ultrasonic Wire Bonding in Microelectronics
,”
ASME J. Tribol.
0742-4787,
123
, pp.
725
731
.
4.
Halling
,
J.
, and
Nuri
,
K. A.
, 1988, “
The Elastic-Plastic Contact of Rough Surfaces and its Relevance in the Study of Wear
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
202
(
c4
), pp.
269
274
.
5.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
6.
Abbott
,
E. J.
, and
Firestone
,
F. A.
, 1933, “
Specifying Surfaces Quality-A Method Based on Accurate Measurement and Comparison
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
55
, pp.
569
572
.
7.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
50
56
.
8.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
86
93
.
9.
Kral
,
E. R.
,
Komvopolous
,
K.
, and
Bogy
,
D. B.
, 1933, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
829
841
.
10.
Kucharski
,
S.
,
Klimczak
,
T.
,
Polijaniuk
,
A.
, and
Kaczmarek
,
J.
, 1994, “
Finite-Elements Model for the Contact of Rough Surfaces
,”
Wear
0043-1648,
177
, pp.
1
13
.
11.
Lin
,
G.
,
Zhu
,
J.
, and
Wang
,
Q. J.
, 2001, “
Elasto-Plastic Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
44
, pp.
437
443
.
12.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
, 2000, “
A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Drive Formulation
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
363
371
.
13.
Kogout
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
14.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
15.
Bhushan
,
B.
, and
Majumdar
,
A.
, 1992, “
Elastic-Plastic Contact for Bifractal Surfaces
,”
Wear
0043-1648,
153
, pp.
53
64
.
16.
Blackmore
,
D.
, and
Zhou
,
G.
, 1998, “
A New Fractal Model for Anisotropic Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
551
557
.
17.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
(
7
), pp.
3617
3624
.
18.
Persson
,
B. N. J.
, 2001, “
Theory or Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
0021-9606,
115
(
8
), pp.
3840
3861
.
19.
Persson
,
B. N. J.
, 2002, “
Adhesion Between an Elastic Body and a Randomly Rough Hard Surface
,”
Eur. Phys. J. E
1292-8941,
8
(
4
), pp.
385
401
.
20.
Zhang
,
L. X.
, and
Zhao
,
Y. P.
, 2004, “
Adhesion of Rough Surfaces With Plastic Deformation
,”
J. Adhes. Sci. Technol.
0169-4243,
18
(
6
), pp.
715
729
.
21.
Othmani
,
A.
, and
Kaminsky
,
C.
, 1998, “
Three Dimensional Fractal Analysis of Sheet Metal Surfaces
,”
Wear
0043-1648,
214
, pp.
147
150
.
22.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2006, “
Variation in Fractal Properties and Non-Gaussian Distributions of Microcontact Between Elastic-Plastic Rough Surfaces with Mean Surface Separation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
143
152
.
23.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge.
24.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
57
63
.
25.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2004, “
Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
646
654
.
26.
Nayak
,
P. R.
, 1971, “
Random Process Model of Rough Surfaces
,
J. Lubr. Technol.
0022-2305,
93
, pp.
398
407
.
27.
Bhushan
,
B.
, 1999,
Handbook of Micro/Nanotribology
,
2nd ed.
,
CRC Press
, Boca Raton.
28.
Mandelbrot
,
B. B.
, 1975, “
Stochastic Models for the Earth’s Relief, the Sharp and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
72
, pp.
3825
3828
.
29.
McCool
,
J. I.
, 1986, “
Comparison of Model for Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
30.
Bhushan
,
B.
, and
Dugger
,
M. T.
, 1990, “
Real Contact Area Measurements on Magnetic Rigid Disks
,”
Wear
0043-1648,
137
, pp.
41
50
.
You do not currently have access to this content.