Two-dimensional elastic field of a nanoscale circular hole/inhomogeneity in an infinite matrix under arbitrary remote loading and a uniform eigenstrain in the inhomogeneity is investigated. The Gurtin–Murdoch surface/interface elasticity model is applied to take into account the surface/interface stress effects. A closed-form analytical solution is obtained by using the complex potential function method of Muskhelishvili. Selected numerical results are presented to investigate the size dependency of the elastic field and the effects of surface elastic moduli and residual surface stress. Stress state is found to depend on the radius of the inhomogeneity/hole, surface elastic constants, surface residual stress, and magnitude of far-field loading.

1.
Kuzumake
,
T.
,
Miyazawa
,
K.
,
Ichinose
,
H.
, and
Ito
,
K.
, 1998, “
Processing of Carbon Nanotube Reinforced Aluminium Composite
,”
J. Mater. Res.
0884-2914,
13
(
9
), pp.
2445
2449
.
2.
Cui
,
Y.
, and
Lieber
,
C. M.
, 2001, “
Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks
,”
Science
0036-8075,
291
(
5505
), pp.
851
853
.
3.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
(
5334
), pp.
1971
1975
.
4.
Cuenot
,
S.
,
Frétigny
,
C.
,
Demoustier-Champagne
,
S.
, and
Nysten
,
B.
, 2004, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
69
(
16
), p.
165410
.
5.
Gibbs
,
J. W.
, 1906,
Scientific Papers
,
Longmans-Green
, London, Vol.
I
, p.
55
.
6.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
(
4
), pp.
291
323
.
7.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larché
,
F.
, 1998, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
(
5
), pp.
1093
1109
.
8.
Cammarata
,
R. C.
, 1997, “
Surface and Interface Stress Effects on Interfacial and Nanostructured Materials
,”
Mater. Sci. Eng., A
0921-5093,
237
(
2
), pp.
180
184
.
9.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
(
3
), pp.
139
147
.
10.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
Effect of Surfaces on the Size-Dependent Elastic State of Nanoinhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
(
4
), pp.
535
537
.
11.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Depedent Eshelby’s Tensor for Embedded Nano-inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
0021-8936,
71
(
5
), pp.
663
671
.
12.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
0022-5096,
53
(
7
), pp.
1574
1596
.
13.
Muskhelishvili
,
N. I.
, 1963,
Some Basic Problems of the Mathematical Theory of Elasticity
,
P.
Noodhoff
,
Groningen
, The Netherlands.
14.
Ruud
,
J. A.
,
Witvrouw
,
A.
, and
Spaepen
,
F.
, 1993, “
Bulk and Interface Stresses in Silver–Nickel Multilayered Thin Films
,”
J. Appl. Phys.
0021-8979,
74
(
4
), pp.
2517
2523
.
15.
Shenoy
,
V. B.
, 2005, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces
,”
Phys. Rev. B
0163-1829,
71
(
9
), p.
094104
.
16.
Meyers
,
M. A.
, and
Chawla
,
K. K.
, 1999,
Mechanical Behavior of Materials
,
Prentice–Hall
, New York.
17.
Yang
,
F.
, 2004, “
Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations
,”
J. Appl. Phys.
0021-8979,
95
(
7
), pp.
3516
3520
.
18.
Maranganti
,
R.
, and
Sharma
,
P.
, 2005, “
A Review of Strain Field Calculations in Embedded Quantum Dots and Wires
,”
Handbook of Theoretical and Computational Nanotechnology
,
M.
Reith
, and
W.
Schommers
, eds.,
in press.
19.
Sharma
,
P.
, and
Ganti
,
S.
, 2002, “
Interfacial Elasticity Corrections to Size-Dependent Strain-State of Embedded Quantum Dots
,”
Phys. Status Solidi B
0370-1972,
234
(
3
), pp.
R10
R12
.
You do not currently have access to this content.