Using a tensor virial method of moments, an approximate solution to the relaxed elastic state of embedded ellipsoidal inclusions is presented that incorporates surface∕interface energies. The latter effects come into prominence at inclusion sizes in the nanometer range. Unlike the classical elastic case, the new results for ellipsoidal inclusions incorporating surface∕interface tension are size-dependent and thus, at least partially, account for the size-effects in the elastic state of nano-inclusions. For the pure dilatation case, exceptionally simple expressions are derived. The present work is a generalization of a previous research that addresses simplified spherical inclusions. As an example, the present work allows us, in a straightforward closed-form manner, the study of effect of shape on the size-dependent strain state of an embedded quantum dot.

1.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
2.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
(
3
), pp.
139
147
.
3.
Cammarata
,
R. C.
,
Sieradzki
,
K.
, and
Spaepen
,
F.
, 2000, “
Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films
,”
J. Appl. Phys.
0021-8979,
87
(
3
), pp.
1227
1234
.
4.
Kukta
,
R.
,
Kouris
,
D.
, and
Sieradzki
,
K.
, 2003, “
Adatoms and Their Relation to Surface Stress
,”
J. Mech. Phys. Solids
0022-5096,
51
(
7
), pp.
1243
1266
.
5.
Kouris
,
D.
,
Peralta
,
A.
, and
Sieradzki
,
K.
, 2000, “
Surface Islands and Their Elastic Interaction With Adatoms
,”
Surf. Sci.
0039-6028,
445
, pp.
420
429
.
6.
Sharma
,
P.
, and
Ganti
,
S.
, 2002, “
Interfacial Elasticity Corrections to the Elastic States of Quantum Dots
,”
Phys. Status Solidi B
0370-1972,
234
, pp.
R10
12
.
7.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
The Effect of Surfaces on the Size-Dependent Elastic State of (Nano) Inhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
535
537
.
8.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface∕Interface Energies
,”
J. Appl. Mech.
0021-8936,
71
, p.
663
.
9.
He
,
L. H.
,
Lim
,
C. W.
, and
Wu
,
B. S.
, 2004, “
A Continuum Model for Size-Dependent Deformation of Elastic Films of Nano-Scale Thickness
,”
Int. J. Solids Struct.
0020-7683,
41
(
3–4
), pp.
847
857
.
10.
Lim
,
C. W.
, and
He
,
L. H.
, 2004, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness
,”
Int. J. Mech. Sci.
0020-7403,
46
(
11
), pp.
1715
1726
.
11.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Eshelby Formalism for Nano-Inhomogeneities
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
(
2062
), pp.
3335
3353
.
12.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
, 2005, “
Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solids Struct.
0020-7683 (to be published).
13.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
, 2005, “
Surface Free Energy and its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
0022-5096,
53
(
8
), pp.
1827
1854
.
14.
Mura
,
T.
, 1987,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Hague, Netherlands
.
15.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Solids
,
Elsevier Science
,
New York
.
16.
Markov
,
K.
, and
Preziosi
,
L.
, 2000,
Heterogeneous Media: Micromechanics Modeling Methods and Simulations
,
Birkhauser Verlag
,
Switzerland
.
17.
Weng
,
G. J.
,
Taya
,
M.
, and
Abe
,
H.
, eds, 1990,
Micromechanics and Inhomogeneity: The Toshio Mura Anniversary Volume
,
Springer-Verlag
,
Berlin
.
18.
Bilby
,
B. A.
,
Miller
,
K. J.
, and
Willis
,
J. R.
, 1984,
IUTAM∕IFC∕ICM Symposium on Fundamentals of Deformation and Fracture (Sheffield, England, 2–5 April 1984, Eshelby Memorial Symposium)
,
Cambridge University Press
, Cambridge.
19.
Mura
,
T.
,
Shodja
,
H. M.
, and
Hirose
,
Y.
, 1996, “
Inclusion Problems
,”
Appl. Mech. Rev.
0003-6900,
49
(
10
), pp.
S118
S127
.
20.
Mura
,
T.
, 2000, “
Some New Problems in the Micromechanics
,”
Mater. Sci. Eng., A
0921-5093,
285
(
1
), pp.
224
228(5)
.
21.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
59
, pp.
291
323
.
22.
Murdoch
,
A. I.
, 1976, “
The Propagation of Surface Waves in Bodies With Material Boundaries
,”
J. Mech. Phys. Solids
0022-5096,
24
, pp.
137
146
.
23.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
, 1998, “
The General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
, pp.
1093
1109
.
24.
Ibach
,
H.
, 1997, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
0167-5729,
29
(
5–6
), pp.
193
263
.
25.
Kleinert
,
H.
, 1989,
Gauge Field in Condensed Matter
,
World Scientific
,
Singapore
, Vol.
2
.
26.
Chandrasekhar
,
S.
, 1969,
Ellipsoidal Figures of Equilibrium
,
Yale University Press
,
New Haven and London
.
27.
Yang
,
F.
, 2004, “
Size-Dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations
,”
J. Appl. Phys.
0021-8979,
95
(
7
), pp.
3516
3520
.
28.
Cahn
,
J. W.
, and
Larche
,
F.
, 1982, “
Surface Stress and the Chemical Equilibrium of Small Crystals. II. Solid Particles Embedded in a Solid Matrix
,”
Acta Metall.
0001-6160,
30
(
1
) pp.
51
56
.
29.
Chandrasekhar
,
S.
, 1965, “The Stability of
Proceedings of the Royal Society of London
,” Vol.
A286
, p.
1
.
30.
Rosenkilde
,
C. E.
, 1967a, “
Surface-Energy Tensors
,”
J. Math. Phys.
0022-2488,
8
(
1
), pp.
84
88
.
31.
Rosenkilde
,
C. E.
, 1967b, “
Surface-Energy Tensors
,”
J. Math. Phys.
0022-2488,
8
(
1
), pp.
88
97
.
32.
MacMillan
,
W. D.
, 1958,
The Theory of the Potential
,
Dover
,
New York
.
33.
Milgrom
,
M.
, and
Shtrikman
,
S.
, 1992, “
The Energy of Inclusions in Linear Media Exact Shape-Independent Relations
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
927
937
.
34.
Sendeckyj
,
G. P.
, 1967, “
Ellipsoidal Inhomogeneity Problem
,” Ph.D. Dissertation, Northwestern University, Evanston.
35.
Singh
,
J.
, 1992,
Physics of Semiconductors and their Heterostructures
,
McGraw-Hill
,
New York
.
36.
Andreev
,
A. D.
,
Downes
,
J. R.
,
Faux
,
D. A.
, and
O’Reilly
,
E. P.
, 1999, “
Strain Distributions in Quantum Dots of Arbitrary Shape
,”
J. Appl. Phys.
0021-8979,
86
(
1
), pp.
297
305
.
This content is only available via PDF.
You do not currently have access to this content.