By utilizing the Hamilton principle and the consistent linearization of the fully nonlinear beam theory, two coupled governing differential equations for a rotating inclined beam are derived. Both the extensional deformation and the Coriolis force effect are considered. It is shown that the vibration system can be considered as the superposition of a static subsystem and a dynamic subsystem. The method of Frobenius is used to establish the exact series solutions of the system. Several frequency relations that provide general qualitative relations between the natural frequencies and the physical parameters are revealed without numerical analysis. Finally, numerical results are given to illustrate the general qualitative relations and the influence of the physical parameters on the natural frequencies of the dynamic system.

1.
Leissa
,
A.
, 1981, “
Vibrational Aspects of Rotating Turbomachinery Blades
,”
Appl. Mech. Rev.
0003-6900,
34
, pp.
629
635
.
2.
Ramamurti
,
V.
, and
Balasubramanian
,
P.
, 1984, “
Analysis of Turbomachine Blades: A Review
,”
Shock Vib. Dig.
0583-1024,
16
, pp.
13
28
.
3.
Rao
,
J. S.
, 1987, “
Turbomachine Blade Vibration
,”
Shock Vib. Dig.
0583-1024,
19
, pp.
3
10
.
4.
Young
,
T. H.
, and
Lin
,
T. M.
, 1998, “
Stability of Rotating Pretwisted, Tapered Beams with Randomly Varying Speeds
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
784
790
.
5.
Rao
,
J. S.
, and
Carnegie
,
W.
, 1972, “
Nonlinear Vibrations of Rotating Cantilever Blades Treated by the Ritz Averaging Process
,”
Aeronaut. J.
0001-9240,
76
, pp.
566
569
.
6.
Ko
,
C. L.
, 1989, “
Dynamic Analysis for Free Vibrations of Rotating Sandwich Tapered Beams
,”
AIAA J.
0001-1452,
27
, pp.
1425
1433
.
7.
Boyce
,
W. E.
, 1956, “
Effect of Hub Radius on the Vibrations of a Uniform Bar
,”
J. Appl. Mech.
0021-8936,
23
, pp.
287
290
.
8.
Lin
,
S. M.
,
Wu
,
C. T.
, and
Lee
,
S. Y.
, 2003, “
Analysis of Rotating Nonuniform Pretwisted Beams with an Elastically Restrained Root and a Tip Mass
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
741
755
.
9.
Chung
,
J.
, and
Yoo
,
H. H.
, 2002, “
Dynamic Analysis of a Rotating Cantilever Beam by Using the Finite Element Method
,”
J. Sound Vib.
0022-460X,
249
, pp.
147
164
.
10.
Fung
,
E. H. K.
, and
Yau
,
D. T. W.
, 1999, “
Effects of Centrifugal Stiffening on the Vibration Frequencies of a Constrained Flexible Arm
,”
J. Sound Vib.
0022-460X,
224
, pp.
808
841
.
11.
Banerjee
,
J. R.
, 2000, “
Free Vibration of Centrifugally Stiffened Uniform and Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
0022-460X,
233
, pp.
857
875
.
12.
Park
,
J. H.
, and
Kim
,
J. H.
, 1999, “
Dynamic Analysis of Rotating Curved Beam with a Tip Mass
,”
J. Sound Vib.
0022-460X,
228
, pp.
1017
1034
.
13.
Yoo
,
H. H.
, and
Shin
,
S. H.
, 1998, “
Vibration Analysis of Rotating Cantilever Beams
,”
J. Sound Vib.
0022-460X,
212
, pp.
807
828
.
14.
Rao
,
S. S.
, and
Gupta
,
R. S.
, 2001, “
Finite Element Analysis of Rotating Timoshenko Beams
,”
J. Sound Vib.
0022-460X,
242
, pp.
103
124
.
15.
Schilhansl
,
M. J.
, 1958, “
Bending Frequency of a Rotating Cantilever Beam
,”
ASME J. Appl. Mech.
0021-8936,
25
, pp.
28
30
.
16.
Pnueli
,
D.
, 1972, “
Natural Bending Frequency Comparable to Rotational Frequency in Rotating Cantilever Beam
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
602
604
.
17.
Lee
,
S. Y.
, and
Kuo
,
Y. H.
, 1991, “
Bending Frequency of a Rotating Beam with an Elastically Restrained Root
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
209
214
.
18.
Simo
,
J. C.
, and
Quoc
,
L. V.
, 1987, “
The Role of Non-Linear Theories in Transient Dynamic Analysis of Flexible Structures
,”
J. Sound Vib.
0022-460X,
119
, pp.
487
508
.
19.
Lin
,
S. C.
, and
Hsiao
,
K. M.
, 2001, “
Vibration Analysis of a Rotating Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
240
, pp.
303
322
.
20.
Stafford
,
R. O.
, and
Giurgiutiu
,
V.
, 1975, “
Semi-Analytic Methods for Rotating Timoshenko Beams
,”
Int. J. Mech. Sci.
0020-7403,
17
, pp.
719
727
.
21.
Giurgiutiu
,
V.
, and
Stafford
,
R. O.
, 1977, “
Semi-Analytic Methods For Frequencies and Mode-Shapes of Rotor Blades
,”
Vertica
0360-5450,
1
, pp.
291
306
.
22.
Lee
,
S. Y.
, and
Kuo
,
Y. H.
, 1992, “
Exact Solutions for the Analysis of General Elastically Restrained Nonuniform Beams
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
205
212
.
23.
Lee
,
S. Y.
, and
Kuo
,
Y. H.
, 1992, “
Bending Vibrations of a Rotating Nonuniform Beam With an Elastically Restrained Root
,”
J. Sound Vib.
0022-460X,
154
, pp.
441
451
.
You do not currently have access to this content.