The small internal length scales of nanomaterials/nano-devices may call the direct application of classical continuum models into question. In this research, a nonlocal elastic shell model, which takes the small scale effects into account, is developed to study the thermal buckling behavior of multi-walled carbon nanotubes. The multi-walled carbon nanotubes are considered as concentric thin shells coupled with the van der Waals forces between adjacent nanotubes. Closed form solutions are formulated for two types of thermal buckling of a double-walled carbon nanotube: Radial thermal buckling (as in a shell under external pressure) and axial thermal buckling. The effects of small scale effects are demonstrated, and a significant influence of internal characteristic parameters such as the length of the CC bond has been found on the thermal buckling critical temperature. The study interestingly shows that the axial buckling is not likely to happen, while the “radial” buckling may often take place when the carbon nano-tubes are subjected to thermal loading. Furthermore, a convenient method to determine the material constant, “e0” and the internal characteristic parameter, “a,” is suggested.

1.
Ijima
,
S.
, 1991, “
Helical micro-tubes of graphite carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Frankland
,
S. J. V.
,
Harik
,
V. M.
,
Odegard
,
G. M.
,
Brenner
,
D. W.
, and
Gates
,
T. S.
, 2003, “
The Stress-Strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulation
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1655
1661
.
3.
Ma
,
H.
,
Zeng
,
J.
,
Lynn
,
M.
,
Kumar
,
S.
, and
Schiraldi
,
D.
, 2003, “
Processing, Structure, and Properties of Fiber from Polyester/Carbon Nanofiber Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1617
1628
.
4.
Krishnam
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Singled-Walled Nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
14013
.
5.
Luo
,
J.
, and
Daniel
,
I. M.
, 2003, “
Characterization and Modeling of Mechanical Behavior of Polymer/Clay Nano-Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1607
1616
.
6.
Schelling
,
P. K.
, and
Keblinski
,
P.
, 2003, “
Thermal Expansion of Carbon Structures
,”
Phys. Rev. B
0163-1829,
68
, pp.
035425
035432
.
7.
Pipes
,
R. B.
, and
Hubert
,
P.
2003, “
Helical Carbon Nanotubes Arrays: Thermal Expansion
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1571
1579
.
8.
Ru
,
C. Q.
, 2000, “
Degraded Axial Buckling Strain of Multiwalled Carbon Nanotubes Due to Interlayer Slips
,”
J. Appl. Phys.
0021-8979,
89
, pp.
3426
3433
.
9.
Harik
,
V. M.
, 2001, “
Ranges of Applicability for Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nano-rod
,”
Solid State Commun.
0038-1098,
120
, pp.
331
335
.
10.
Govindjee
,
S.
, and
Sackman
,
J. L.
, 1999, “
On the Use of Continuum Mechanics to Estimate the Properties of Nanotubes
,”
Solid State Commun.
0038-1098,
110
, pp.
227
230
.
11.
Shen
,
H-S
, 2004, “
Postbuckling Prediction of Double-Walled Carbon Nanotubes Under Hydrostatic Pressure
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
2643
2657
.
12.
Girifalco
,
L. A.
, and
Lad
,
R. A.
, 1955, “
Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System
,”
J. Chem. Phys.
0021-9606,
25
, pp.
693
697
.
13.
Eringen
,
A. C.
, 1972, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
1
16
.
14.
Eringen
,
A. C.
, and
Edelen
,
D. G. B.
, 1972, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
233
248
.
15.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
0021-8979,
54
, pp.
4703
4710
.
16.
Peddieson
,
J.
,
Buchanan
,
R.
, and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
305
312
.
17.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multi-Walled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
0021-8979,
94
, pp.
7281
7287
.
18.
Thornton
,
E. A.
, 1993, “
Thermal Buckling of Plates and Shells
,”
Appl. Mech. Rev.
0003-6900,
46
(
10
), pp.
485
506
.
19.
Brush
,
D. O.
, and
Almroth
,
B. O.
, 1975, “
Buckling of Bars, Plates and Shells
,
McGraw-Hill
, New York.
20.
Li
,
R.
,
Frostig
,
Y.
, and
Kardomateas
,
G. A.
, 2001, “
Nonlinear High-Order Response of Imperfect Sandwich Beams with Delaminated Faces
,”
AIAA J.
0001-1452,
39
(
9
), pp.
1782
1787
.
21.
Kardomateas
,
G. A.
, 1993, “
The Initial Post-Buckling and Growth Behavior of Internal Delaminations in Composite Plates
,”
J. Appl. Mech.
0021-8936,
60
, pp.
903
910
.
22.
Meyers
,
C. A.
, and
Hyer
,
M. W.
, 1991, “
Thermal Buckling and Postbuckling of Symmetrically Laminated Composites Plates
,”
J. Therm. Stresses
0149-5739,
14
, pp.
519
540
.
23.
Eslami
,
M. R.
,
Ziaili
,
A. R.
, and
Ghorbanpour
,
A.
, 1996, “
Thermal Buckling of Thin Cylindrical Shells on Improved Stability Equations
,”
J. Therm. Stresses
0149-5739,
19
, pp.
299
315
.
24.
Saito
,
R.
,
Matsuo
,
R.
,
Kimura
,
T.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 2001, “
Anomalous Potential Barrier of Double-Wall Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
348
(
9
), pp.
187
193
.
25.
Wang
,
L.
, and
Hu
,
H.
, 2005, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
71
, pp.
195412
195419
.
26.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
27.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
, pp.
341
348
.
You do not currently have access to this content.