In this study, the dynamic behavior of an elastic sphere-plane contact interface is studied analytically and experimentally. The analytical model includes both a continuous nonlinearity associated with the Hertzian contact and a clearance-type nonlinearity due to contact loss. The dimensionless governing equation is solved analytically by using multi-term harmonic balance method in conjunction with discrete Fourier transforms. The accuracy of the dynamic model and solution methods is demonstrated through comparisons with experimental data and numerical solutions for both harmonic amplitudes of the acceleration response and the phase difference between the response and the force excitation. A single-term harmonic balance approximation is used to derive a criterion for contact loss to occur. The influence of harmonic external excitation f(τ) and damping ratio ζ on the steady state response is also demonstrated.

1.
Nayak
,
P. R.
, 1972, “
Contact Vibrations
,”
J. Sound Vib.
0022-460X,
22
(
3
), pp.
297
322
.
2.
Hess
,
D.
, and
Soom
,
A.
, 1991, “
Normal Vibrations and Friction Under Harmonic Loads: Part 1-Hertzian Contact
,”
ASME J. Tribol.
0742-4787,
113
, pp.
80
86
.
3.
Perret-Liaudet
,
J.
, 1997, “
Résonance Sous-Harmonique d’Ordre Deux Dans un Contact Sphère-Plan
,”
C.R. Acad. Sci., Paris, Série IIb
,
325
, pp.
443
448
.
4.
Perret-Liaudet
,
J.
, 1998, “
Résonance Sur-Harmonique d’ordre Deux Dans un Contact Sphère-Plan
,”
C.R. Acad. Sci., Paris, Série IIb
,
326
, pp.
787
792
.
5.
Sabot
,
J.
,
Krempf
,
P.
, and
Janolin
,
C.
, 1998, “
Non-linear Vibrations of a Sphere-plane Contact Excited by a Normal Load
,”
J. Sound Vib.
0022-460X,
214
(
2
), pp.
359
375
.
6.
Perret-Liaudet
,
J.
, and
Sabot
,
J.
, 1999, “
Vibro-impact Induced by Nonlinear Resonances in Hertzian Contacts
,” in
Dynamics of Vibro-impact Systems
,
V. I.
Babitsky
, ed.,
Springer
,
Berlin
, pp.
251
260
.
7.
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
, 2003, “
Experiments and Numerical Results on Non-linear Vibrations of an Impacting Hertzian Contact. Part 1: Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
265
(
2
), pp.
289
307
.
8.
Perret-Liaudet
,
J.
, and
Rigaud
,
E.
, 2003, “
Experiments and Numerical Results on Non-linear Vibrations of an Impacting Hertzian Contact. Part 2: Random Excitation
,”
J. Sound Vib.
0022-460X,
265
(
2
), pp.
309
327
.
9.
Comparin
,
R. J.
, and
Singh
,
R.
, 1989, “
Nonlinear Frequency Response Characteristics of an Impact Pair
,”
J. Sound Vib.
0022-460X,
134
(
2
), pp.
259
290
.
10.
Kahraman
,
A.
, and
Singh
,
R.
, 1990, “
Nonlinear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
0022-460X,
142
(
1
), pp.
49
75
.
11.
Padmanabhan
,
C.
, and
Singh
,
R.
, 1992, “
Spectral Coupling Issues in a Two-Degree-Of-Freedom System with Clearance Non-Linearities
,”
J. Sound Vib.
0022-460X,
155
(
2
), pp.
209
230
.
12.
Rook
,
T. E.
, and
Singh
,
R.
, 1995, “
Dynamic Analysis of a Reverse-idler Gear Pair with Concurrent Clearances
,”
J. Sound Vib.
0022-460X,
182
(
2
), pp.
303
322
.
13.
Natsiavas
,
S.
, 1989, “
Periodic Response and Stability of Oscillators with Symmetric Trilinear Restoring Force
,”
J. Sound Vib.
0022-460X,
132
(
2
), pp.
315
331
.
14.
Natsiavas
,
S.
, and
Gonzalez
,
H.
, 2001, “
Vibration of Harmonically Excited Oscillators with Asymmetric Constraints
,”
J. Appl. Mech.
0021-8936,
59
, pp.
284
290
.
15.
Theodossiades
,
S.
, and
Natsiavas
,
S.
, 2001, “
Periodic and Chaotic Dynamics of Motor-driven Gear-Pair Systems with Backlash
,”
Chaos, Solitons Fractals
0960-0779,
12
, pp.
2427
2440
.
16.
Natsiavas
,
S.
,
Theodossiades
,
S.
, and
Goudas
,
I.
, 2000, “
Dynamic Analysis of Piecewise Linear Oscillators with Time Periodic Coefficients
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
53
68
.
17.
Theodossiades
,
S.
, and
Natsiavas
,
S.
, 2000, “
Non-linear Dynamics of Gear-pair Systems with Periodic Stiffness and Backlash
,”
J. Sound Vib.
0022-460X,
229
, pp.
287
310
.
18.
Blankenship
,
G. W.
, and
Kahraman
,
A.
, 1995, “
Steady State Forced Response of a Mechanical Oscillator with Combined Parametric Excitation and Clearance Type Non-linearity
,”
J. Sound Vib.
0022-460X,
185
(
5
),
743
765
.
19.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1996, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System with Clearance
,”
J. Sound Vib.
0022-460X,
194
(
3
), pp.
317
336
.
20.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
, 2005, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train using Multi-term Harmonic Balance Method: Period-one Motions
,”
J. Sound Vib.
0022-460X,
284
, pp.
151
172
.
21.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
, 2005, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train using Multi-term Harmonic Balance Method: Subharmonic Resonances
,”
J. Sound Vib.
0022-460X,
279
, pp.
417
451
.
22.
Choi
,
Y. S.
, and
Noah
,
S. T.
, 1988, “
Forced Periodic Vibration of Unsymmetric Piecewise-linear System
,”
J. Sound Vib.
0022-460X,
121
(
1
), pp.
117
126
.
23.
Kim
,
Y. B.
, and
Noah
,
S. T.
, 1991, “
Stability and Bifurcation Analysis of Oscillators with Piecewise-linear Characteristics
,”
J. Appl. Mech.
0021-8936,
58
, pp.
545
553
.
24.
Lau
,
S. L.
, and
Zhang
,
W.-S.
, 1992, “
Nonlinear Vibrations of Piecewise Linear Systems by Incremental Harmonic Balance Method
,”
J. Appl. Mech.
0021-8936,
59
, pp.
53
160
.
25.
Raghothama
,
A.
, and
Narayanan
,
S.
, 2000, “
Bifurcation and Chaos of an Articulated Loading Platform with Piecewise Non-linear Stiffness Using the Incremental Harmonic Balance Method
,”
Ocean Eng.
0029-8018,
27
, pp.
1087
1107
.
26.
Ma
,
Q. L.
, and
Kahraman
,
A.
, 2005, “
Period-One Motions of a Mechanical Oscillator with Periodically Time-Varying, PiecewiseNonlinear Stiffness
,”
J. Sound Vib.
0022-460X,
284
, pp.
893
914
.
27.
Watson
,
L. T.
,
Sosonkina
,
M.
,
Melville
,
R. C.
,
Morgan
,
A. P.
, and
Walker
,
H. F.
, 1997, “
Algorithm 777: HOMPACK90: A Suite of Fortran 90 Codes for Globally Convergent Homotopy Algorithms
,”
ACM Trans. Math. Softw.
0098-3500,
23
(
4
), pp.
514
549
.
28.
Allgower
,
E. L.
, and
Georg
,
K.
, 1990,
Numerical Continuation Methods: An Introduction
,
Springer
,
New York
.
29.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wile
,
New York
, 1995.
30.
Hsu
,
C. S.
, and
Cheng
,
W. H.
, 1974, “
Steady State Response of Dynamical System Under Combined Parametric and Forcing Excitations
,”
J. Appl. Mech.
0021-8936,
96
, pp.
371
378
.
31.
Seydel
,
R.
, 1994,
Practical Bifurcation and Stability Analysis—From Equilibrium to Chaos
,
Springer
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.