The linear stability analysis of the shape of a spherical cavity embedded in an infinite-size matrix under stress has been performed when infinitesimal perturbation from sphericity of the rod is assumed to appear by surface diffusion. Developing the perturbation on a basis of complete spherical harmonics, the growth rate of each harmonic Ylm(θ,φ) has been determined and the conditions for the development of the different fluctuations have been discussed as a function of the applied stress and the order l of the perturbation.

1.
Newcomb
,
S. A.
, and
Tressler
,
R. E.
, 1993, “
Slow Crack Growth in Sapphire Fibers at 800° to 1500°C
,”
J. Am. Ceram. Soc.
0002-7820,
76
, pp.
2505
2512
.
2.
Kulinsky
,
L.
,
Powers
,
J. D.
, and
Glaeser
,
A. M.
, 1996, “
Morphological Evolution of Pre-Perturbed Pore Channels in Sapphire
,”
Acta Mater.
1359-6454,
44
, pp.
4115
4130
.
3.
Wakai
,
F.
, and
Aldinger
,
F.
, 2003, “
Sintering Through Surface Motion by the Difference in Mean Curvature
,”
Acta Mater.
1359-6454,
51
, pp.
4013
4024
.
4.
Takahashi
,
Y.
,
Takahashi
,
K.
, and
Nishiguchi
,
K.
, 1991, “
A Numerical Analysis of Void Shrinkage Processes Controlled by Coupled Surface and Interface Diffusion
,”
Acta Metall. Mater.
0956-7151,
39
, pp.
3199
3216
.
5.
Mullins
,
W. W.
, and
Sekerka
,
R. F.
, 1963, “
Morphological Stability of a Particle Growing by Diffusion or Heat Flow
,”
J. Appl. Phys.
0021-8979,
34
, pp.
323
329
.
6.
Asaro
,
R. J.
, and
Tiller
,
W. A.
, 1972, “
Interface Morphology Development During Stress Corrosion Cracking: Part I. Via Surface Diffusion
,”
Metall. Trans.
0026-086X,
3
, pp.
1789
1796
.
7.
Grinfeld
,
M. A.
, 1986, “
Instability of the Separation Boundary Between a Non-Hydrostatically Stressed Elastic Body and a Melt
,”
Sov. Phys. Dokl.
0038-5689,
31
, pp.
831
834
.
8.
Srolovitz
,
D. J.
, 1989, “
On the Stability of Surfaces of Stressed Solids
,”
Acta Metall.
0001-6160,
37
, pp.
621
625
.
9.
Gao
,
H.
, 1994, “
Some General Properties of Stress-Driven Surface Evolution in a Heteroepitaxial Thin Film Structure
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
741
772
.
10.
Spencer
,
B. J.
,
Voorhees
,
P. W.
, and
Davis
,
S. H.
, 1991, “
Morphological Instability in Epitaxially Strained Dislocation-Free Solid Films
,”
Phys. Rev. Lett.
0031-9007,
67
, pp.
3696
3699
.
11.
Jonsdottir
,
F.
, 1995, “
Computation of Equilibrium Surface Fluctuations in Strained Epitaxial Films Due to Interface Misfit Dislocations
,”
J. Modelling Simul. Mater. Sci. Eng.
,
3
, pp.
503
520
.
12.
Suo
,
Z.
, and
Wang
,
W.
, 1994, “
Diffusive Void Bifurcation in Stressed Solid
,”
J. Appl. Phys.
0021-8979,
76
, pp.
3410
3421
.
13.
Wang
,
W.
, and
Suo
,
Z.
, 1997, “
Shape Change of a Pore in a Stressed Solid via Surface Diffusion Motivated by Surface and Elastic Energy Variation
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
709
729
.
14.
Colin
,
J.
,
Grilhé
,
J.
, and
Junqua
,
N.
, 1997, “
Morphological Instabilities of a Stressed Cylindrical Pore Channel
,”
Acta Mater.
1359-6454,
45
, pp.
3835
3841
.
15.
Kirill
,
D. J.
,
Davis
,
S. H.
,
Mikisis
,
M. J.
, and
Voorhees
,
P. W.
, 2002, “
Morphological Instability of Pores and Tubules
,”
Interfaces Free Boundaries
1463-9963,
4
, pp.
371
394
.
16.
Gao
,
H.
, 1991, “
Stress Analysis of Smooth Polygonal Holes via a Boundary Perturbation Method
,”
J. Appl. Mech.
0021-8936,
58
, pp.
851
853
.
17.
Gao
,
H.
, 1992, “
Stress Analysis of Holes in Anisotropic Elastic Solids: Conformal Mapping and Boundary Perturbation
,”
Q. J. Mech. Appl. Math.
0033-5614,
45
, pp.
149
168
.
18.
Leo
,
P. H.
, and
Sekerka
,
R. F.
, 1989, “
The Effect of Elastic Fields on the Morphological Stability of a Precipitate Grown from Solid Solution
,”
Acta Metall.
0001-6160,
37
, pp.
3139
3149
.
19.
Leo
,
P. H.
,
Iwan
,
J.
,
Alaxender
,
D.
, and
Sekerka
,
R. F.
, 1985, “
Elastic Fields about a Perturbed Spherical Inclusion
,”
Acta Metall.
0001-6160
33
, pp.
985
989
.
20.
Caroli
,
B.
,
Caroli
,
C.
,
Roulet
,
B.
, and
Voorhees
,
P. W.
, 1989, “
Effect of Elastic Stresses on the Morphological Stability of a Solid Sphere Growing from a Supersatured Melt
,”
Acta Metall.
0001-6160,
37
, pp.
257
268
.
21.
Sokolnikoff
,
I. S.
, 1956,
Mathematical Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
, New York, pp.
343
345
.
22.
Larche
,
F. C.
, and
Cahn
,
J. W.
, 1985, “
The Interaction of Composition Stress in Crystalline Solids
,”
Acta Metall.
0001-6160,
33
, pp.
331
357
.
23.
Mullins
,
W. W.
, 1957, “
Theory of Thermal Grooving
,”
J. Appl. Phys.
0021-8979
28
, pp.
333
339
.
24.
Spencer
,
B. J.
, and
Tersoff
,
J.
, 1997, “
Equilibrium Shapes and Properties of Epitaxially Strained Islands
,”
Phys. Rev. Lett.
0031-9007
79
, pp.
4858
4860
.
25.
Johnson
,
W. C.
, and
Cahn
,
W.
, 1984, “
Elastically Induced Shape Bifurcation of Inclusions
,”
Acta Metall.
0001-6160,
32
, pp.
1925
1933
.
26.
Sun
,
B.
,
Suo
,
Z.
, and
Evans
,
A. G.
, 1994, “
Emergence of Crack by Mass Transport in Elastic Crystals Stressed at High Temperature
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1653
1677
.
You do not currently have access to this content.