An analytical method is presented to solve the problem of electromagnetoelastic dynamic response of transversely isotropic piezoelectric hollow spheres in a uniform magnetic field, subjected to arbitrary mechanical load and electric excitation. Exact expressions for the dynamic responses of stresses, perturbation of magnetic field vector, electric displacement, and electric potential in piezoelectric hollow spheres are obtained by means of Hankel transform, Laplace transform and their inverse transforms. An interpolation method is applied to solve the Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between electric-elastic field and electric-magnetic field. Thus, an analytical solution for the problem of dynamic response of a transversely isotropic piezoelectric hollow sphere in a uniform magnetic field is obtained. Finally, some numerical examples are carried out, and may be used as a reference to solve other dynamic coupled problems of electromagneto-elasticity.

1.
Hu
,
H. C.
, 1954, “
On the General Theory of Elasticity for a Spherically Isotropic Medium
,”
Acta Sci. Sin.
0365-7183,
3
, pp.
247
260
.
2.
Hata
,
T.
, 1991, “
Thermal Shock in a Hollow Sphere Caused by Rapid Uniform Heating
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
64
69
.
3.
Hata
,
T.
, 1993, “
Stress-Focusing Effect in a Uniformly Heated Transversely Isotropic Sphere
,”
Int. J. Solids Struct.
0020-7683,
30
, pp.
1419
1428
.
4.
Hata
,
T.
, 1997, “
Stress-Focusing Effect Due to an Instantaneous Concentrated Heat Source in a Sphere
,”
J. Therm. Stresses
0149-5739,
20
, pp.
269
279
.
5.
Sherief
,
H. H.
, and
Ezzat
,
M. A.
, 1996, “
Thermal-Shock Problem in Magnetothermoelaticity with Thermal Relaxation
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
4449
4459
.
6.
Wang
,
X.
, 2000, “
Dynamic Thermostress-concentration Effect in a Spherically Isotropic Sphere
,”
Acta Mech. Sin.
0459-1879,
32
, pp.
245
250
(in Chinese).
7.
Heyliger
,
P.
, and
Wu
,
Y. C.
, 1999, “
Electroelastic Fields in Layered Piezoelectric Spheres
,”
Ind. J. Eng. Mater. Sci.
0971-4588,
37
, pp.
143
161
.
8.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
, 2003, “
Dynamic Response of a Pyroelectric Hollow Sphere Under Radial Deformation
,”
Eur. J. Mech. A/Solids
0997-7538,
22
, pp.
617
631
.
9.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
, 2003, “
Dynamic Response of a Functionally Graded Pyroelectric Hollow Sphere for Spherically Symmetric Problems
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
1029
1051
.
10.
Dai
,
H. L.
, and
Wang
,
X.
, 2004, “
Dynamic Responses of Piezoelectric Hollow Cylinders in an Axial Magnetic Field
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
5231
5246
.
11.
Dai
,
H. L.
, and
Wang
,
X.
, 2005, “
Dynamic Wave Propagation in Piezoelectric Hollow Spheres Subjected to Thermal Shock and Electric Excitation
,”
Struct. Eng. Mech.
1225-4568, pp.
441
457
.
12.
Dai
,
H. L.
, and
Wang
,
X.
, 2005, “
Stress Wave Propagation in Laminated Piezoelectric Spherical Shells Under Thermal Shock and Electric Excitation
,”
Eur. J. Mech. A/Solids
0997-7538,
24
, pp.
263
276
.
13.
Lekhnitskii
,
S. G.
, 1981,
Theory of Elasticity of an Anisotropic Body
,
Mir Publishers
, Moscow.
14.
Cinelli
,
G.
, 1965, “
An Extension of the Finite Hankel Transform and Application
,”
Ind. J. Eng. Mater. Sci.
0971-4588,
3
, pp.
539
559
.
15.
Sinha
,
D. K.
, 1962, “
Note on the Radial Deformation of a Piezoelectric, Polarized Spherical Shell with a Symmetrical Temperature Distribution
,”
J. Acoust. Soc. Am.
0001-4966,
34
, pp.
1073
1075
.
16.
Chen
,
W. Q.
, and
Shioya
,
T.
, 2001, “
Piezothermoelastic Behavior of a Pyroelectric Spherical Shell
,”
J. Therm. Stresses
0149-5739,
24
, pp.
105
120
.
17.
Ezzat
,
M. A.
, 1997, “
Generation of Generalized Magnetothermoelastic Waves by Thermal Shock in a Perfectly Conducting Half Space
,”
J. Therm. Stresses
0149-5739,
20
(
6
), pp.
633
647
.
18.
John
,
K. D.
, 1984,
Electromagnetics
,
McGraw-Hill
, New York.
19.
Dunn
,
M. L.
, and
Taya
,
M.
, 1994, “
Electroelastic Field Concentrations in and Around Inhomogeneties in Piezoelectric Solids
,”
Appl. Mech. Rev.
0003-6900,
61
, pp.
474
475
.
20.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
, 1975,
Electrodynamics
, Vol.
2
.
Academic Press
, New York, p. pp.
440
.
21.
Kress
,
R.
, 1989,
Linear Integral Equation
(Applied Mathematical Sciences, Vol.
82
),
Springer-Verlag
, Berlin.
22.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Hou
,
P. F.
, 2003, “
The Dynamic Response of Piezoelectric Hollow Cylinders for Axisymmetric Plane Strain Problems
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
105
123
.
You do not currently have access to this content.