Sharp corner displacement functions have been well used in the past to accelerate the numerical solutions of two-dimensional free vibration problems, such as plates, to obtain accurate frequencies and mode shapes. The present analysis derives such functions for three-dimensional (3D) bodies of revolution where a sharp boundary discontinuity is present (e.g., a stepped shaft, or a circumferential V notch), undergoing arbitrary modes of deformation. The 3D equations of equilibrium in terms of displacement components, expressed in cylindrical coordinates, are transformed to a new coordinate system having its origin at the vertex of the corner. An asymptotic analysis in the vicinity of the sharp corner reduces the equations to a set of coupled, ordinary differential equations with variable coefficients. By a suitable transformation of variables the equations are simplified to a set of equations with constant coefficients. These are solved, the boundary conditions along the intersecting corner faces are applied, and the resulting eigenvalue problems are solved for the characteristic equations and corner functions.

1.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension
,”
Am. J. Sci.
0002-9599,
19
, pp.
526
528
.
2.
Williams
,
M. L.
, 1953, “
Discussion of ‘Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension’
,”
Am. J. Sci.
0002-9599,
20
, pp.
590
.
3.
Williams
,
M. L.
, 1952, “
Surface Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates under Bending
,”
Proceedings of the First U.S. National Congress of Applied Mechanics
,
ASME
,
New York
, pp.
325
329
.
4.
Sih
,
G. C.
, and
Rice
,
J. R.
, 1964, “
The Bending of Plates of Dissimilar Materials with Cracks
,”
Am. J. Sci.
0002-9599,
31
, pp.
477
482
.
5.
Hein
,
V. L.
, and
Erdogan
,
F.
, 1971, “
Stress Singularities in a Two-Material Wedge
,”
Int. J. Fract. Mech.
0020-7268,
7
, pp.
317
330
.
6.
Bogy
,
D. B.
, and
Wang
,
K. C.
, 1971, “
Stress Singularities at Interface Corners in Bonded Dissimilar Isotropic Elastic Materials
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
993
1005
.
7.
Ting
,
T. C. T.
, 1990, “
Interface Cracks in Anisotropic Bimaterials
,”
J. Mech. Phys. Solids
0022-5096,
38
, pp.
505
513
.
8.
Hartranft
,
R. J.
, and
Sih
,
G. C.
, 1969, “
The Use of Eigenfunction Expansions in the General Solution of the Three-Dimensional Crack Problems
,”
J. Math. Mech.
0095-9057,
19
, pp.
123
138
.
9.
Su
,
X. M.
, and
Sun
,
C. T.
, 1996, “
On Singular Stress at the Crack Tip of a Thick Plate Under In-Plane Loading
,”
Int. J. Fract.
0376-9429,
82
, pp.
237
252
.
10.
Glushkov
,
E.
,
Glushkova
,
N.
, and
Lapina
,
O.
, 1999, “
3-D Elastic Stress Singularity at Polyhedral Corner Points
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
1105
1128
.
11.
Ritz
,
W.
, 1908, “
Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik
,”
J. Reine Angew. Math.
0075-4102,
135
, pp.
1
61
.
12.
Ritz
,
W.
, 1909, “
Theorie der Transversalschwingungen einer quadratische Platte mit freien Rändern
,”
Ann. Phys.
0003-3804,
28
, pp.
737
786
.
13.
Leissa
,
A. W.
,
McGee
,
O. G.
, and
Huang
,
C. S.
, 1993, “
Vibrations of Sectorial Plates Having Corner Stress Singularities
,”
Am. J. Sci.
0002-9599,
60
, pp.
134
140
.
14.
Leissa
,
A. W.
,
McGee
,
O. G.
, and
Huang
,
C. S.
, 1993, “
Vibrations of Circular Plates Having V-Notches or Sharp Radial Cracks
,”
J. Sound Vib.
0022-460X,
161
, pp.
227
239
.
15.
McGee
,
O. G.
,
Leissa
,
A. W.
, and
Huang
,
C. S.
, 1992, “
Vibrations of Cantilevered Skew Plates with Corner Stress Singularities
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
409
423
.
16.
Huang
,
C. S.
,
McGee
,
O. G.
,
Leissa
,
A. W.
, and
Kim
,
J. W.
, 1995, “
Accurate Vibration Analysis of Simply Supported Rhombic Plates by Considering Stress Singularities
,”
ASME J. Vibr. Acoust.
0739-3717,
117
, pp.
245
251
.
17.
Huang
,
C. S.
, 2003, “
Stress Singularities in Angular Corners in First-Order Shear Deformation Plate Theory
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
1
20
.
18.
Huang
,
C. S.
,
Leissa
,
A. W.
, and
Chang
,
M. J.
, 2005, “
Vibrations of Skewed Cantilevered Triangular, Trapezoidal and Parallelogram Mindlin Plates with Considering Corner Stress Singularities
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
1789
1806
.
19.
Yosibash
,
Z.
, and
Schiff
,
B.
, 1993, “
A Superelement for Two-Dimensional Singular Boundary Value Problems in Linear Elasticity
,”
Int. J. Fract.
0376-9429,
62
, pp.
325
340
.
20.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Fleming
,
M.
,
Organ
,
D.
, and
Liu
,
W. K.
, 1996, “
Smoothing and Accelerated Computations in the Element Free Galerkin Method
,”
J. Comput. Appl. Math.
0377-0427,
74
, pp.
111
126
.
21.
Fleming
,
M.
,
Chu
,
Y. A.
,
Moran
,
B.
, and
Belyschko
,
T.
, 1997, “
Enriched Element Free Galerkin Methods for Crack Tip Fields
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
1483
1504
.
22.
Dolbow
,
J.
,
Möse
,
N.
, and
Belyschko
,
T.
, 2000, “
Discontinuous Enrichment in Finite Element with a Partition of Unity Method
,”
Finite Elem. Anal. Design
0168-874X,
36
, pp.
235
260
.
23.
Leissa
,
A. W.
, and
So
,
J.
, 1995, “
Comparisons of Vibration Frequencies of Rods and Beams from One-Dimensional and Three-Dimensional Analyses
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
2122
2135
.
24.
Leissa
,
A. W.
, and
So
,
J.
, 1995, “
Three-Dimensional Vibrations of Truncated Hollow Cones
,”
J. Vib. Control
1077-5463,
1
, pp.
145
158
.
25.
Leissa
,
A. W.
, and
Kang
,
J.-H.
, 1999, “
Three-Dimensional Vibration Analysis of Thick Shells of Revolution
,”
J. Engrg. Mech. Div.
0044-7951,
125
, pp.
1365
1372
.
26.
Leissa
,
A. W.
, and
Kang
,
J.-H.
, 2000, “
Three-Dimensional Vibrations of Thick Spherical Shell Segments with Variable Thickness
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4811
4823
.
27.
Zak
,
A. R.
, 1964, “
Stresses in the Vicinity of Boundary Discontinuities in Bodies of Revolution
,”
Am. J. Sci.
0002-9599,
31
, pp.
150
152
.
28.
Love
,
A. E. H.
, 1927,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
The Macmillan Co
, New York (reprinted by Daver Publications, 1944).
29.
Sokolnikoff
,
I. S.
, 1956,
Mathematical Theory of Elasticity
,
2nd ed.
,
McGraw-Hill Book
, New York.
30.
Chaudhuri
,
R. A.
, and
Xie
,
M.
, 2000, “
A Novel Eigenfunction Expansion Solution for Three-Dimensional Crack Problems
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2565
2580
.
This content is only available via PDF.
You do not currently have access to this content.