This study combines a fluid mechanics-based approach and the Herschel-Bulkley constitutive equation to develop a theoretical model for predicting the behavior of field-controllable, magneto-rheological (MR), and electro-rheological (ER) fluid dampers. The goal is to provide an accurate theoretical model for analysis, design, and development of control algorithms of MR/ER dampers. Simplified explicit expressions for closed-form solution of the pressure drop across a MR fluid valve are developed. The Herschel-Bulkley quasi-steady flow analysis is extended to include the effect of fluid compressibility to account for the nonlinear dynamic behavior of MR/ER fluid dampers. The advantage of this model is that it only depends on geometric and material properties of the MR/ER material and the device. The theoretical results are validated by an experimental study. It is demonstrated that the proposed model can effectively predict the nonlinear behavior of field-controllable fluid dampers.

1.
Symans
,
M. D.
, and
Constantinou
,
M. C.
, 1999, “
Semi-Active Control Systems for Seismic Protection of Structures: A State-of-the-Art Review
,”
Eng. Struct.
0141-0296,
21
(
6
), pp.
469
487
.
2.
Carlson
,
J. D.
,
Catanzarite
,
D. M.
, and
StClair
,
K. A.
, 1996, “
Commercial Magneto-Rheological Fluid Devices
,”
Int. J. Mod. Phys. B
0217-9792,
10
(
23–24
), pp.
2857
2865
.
3.
Rabinow
,
J.
, 1951, “
Magnetorheological Fluid
,” U.S. Patent No. 2,575,360.
4.
Winslow
,
W. M.
, 1949, “
Induced Fibration of Suspensions
,”
J. Appl. Phys.
0021-8979,
20
, pp.
137
140
.
5.
Ginder
,
J. M.
, 1996, “
Rheology Controlled by Magnetic Fields
,”
Encyclopedia of Applied Physics
,
16
, pp.
487
503
.
6.
Gordaninejad
,
F.
, and
Breese
,
D. G.
, 2000, “
Magneto-Rheological Fluid Dampers
,” U.S. Patent No. 6,019,201.
7.
Gordaninejad
,
F.
, and
Kelso
,
S. P.
, 2001, “
Fail-Safe Magneto-Rheological Fluid Dampers for Off-Highway, High-Payload Vehicles
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
5
), pp.
395
406
.
8.
Weiss
,
K. D.
,
Duclos
,
T. G.
,
Carlson
,
J. D.
,
Chrazn
,
M. J.
, and
Margalia
,
A. J.
, 1993, “
High-Strength Magneto- and Electro-Rheological Fluids
,”
SAE Technical Paper Series No. 932451
, presented at the
1993 International Off-Highway and Powerplant Congress and Exposition
, Milwaukee, Wisconsin, USA.
9.
Ginder
,
J. M.
, 1998, “
Behavior of Magnetorheological Fluids
,”
MRS Bull.
0883-7694,
23
, pp.
26
29
.
10.
Rankin
,
P. J.
,
Ginder
,
J. M.
, and
Klingenberg
,
D. J.
, 1998, “
Electro- and Magneto-Rheology
,”
Curr. Opin. Colloid Interface Sci.
1359-0294,
3
(
4
), pp.
373
381
.
11.
Phillips
,
R. W.
, 1969, “
Engineering Applications of Fluids With a Variable Yield Stress
,” Ph.D. Dissertation, University of California.
12.
Lou
,
Z.
,
Ervin
,
R. D.
, and
Filisco
,
F. E.
, 1994, “
A Preliminary Parametric Study of Electrorheological Dampers
,”
J. Fluid Mech. Eng., Trans. ASME
,
116
, pp.
570
576
.
13.
Gavin
,
H. P.
,
Hanson
,
R. D.
,
Filisko
,
F. E.
, 1996, “
Electrorheological Dampers. 1. Analysis and Design
,”
ASME J. Appl. Mech.
0021-8936,
63
(
3
), pp.
669
675
.
14.
Stanway
,
R.
,
Sproston
,
J. L.
, and
El-Wahed
,
A. K.
, 1996, “
Application of Electrorheological Fluids in Vibration Control: A Survey
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
464
482
.
15.
Yang
,
G.
,
Spencer
,
B. F.
,
Carlson
,
J. D.
, and
Sain
,
M. K.
, 2002, “
Large-Scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations
,”
Eng. Struct.
0141-0296,
24
(
3
), pp.
309
323
.
16.
Goodwin
,
J. W.
,
Markham
,
G. M.
, and
Vincent
,
B.
, 1997, “
Studies on Model Electrorheological Fluids
,”
J. Phys. Chem. B
1089-5647,
101
, pp.
1961
1967
.
17.
Mokeev
,
A. A.
,
Korobko
,
E. V.
, and
Vedernikova
,
L. G.
, 1992, “
Structural Viscosity of Electrorheological Fluids
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
42
, pp.
213
230
.
18.
Shulman
,
Z. P.
, and
Korobko
,
E. V.
, 1978, “
Convective Heat Transfer of Dielectric Suspensions in Coaxial Cylindrical Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
21
(
5
), pp.
543
548
.
19.
Stanway
,
R.
,
Sproston
,
J. L.
, and
Stevens
,
N. G.
, 1987, “
Non-Linear Modeling of an Electrorheological Vibration Damper
,”
J. Electrost.
0304-3886,
20
, pp.
167
184
.
20.
Halsey
,
T. C.
,
Martin
,
J. E.
, and
Adolf
,
D.
, 1992, “
Rheology of Electrorheological Fluids
,”
Phys. Rev. Lett.
0031-9007,
68
(
10
), pp.
1519
1522
.
21.
Felt
,
D. W.
,
Hagenbuchle
,
M.
,
Liu
,
J.
, and
Richard
,
J.
, 1996, “
Rheology of a Magnetorheological Fluid
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
(
5
), pp.
589
593
.
22.
Wang
,
X.
, and
Gordaninejad
,
F.
, 1999, “
Herschel-Bulkley Analysis of Electro- and Magneto-Rheological Controllable Fluids in Flow Mode
,”
Proceedings of the 7th International Conference on ER Fluids and MR Suspensions
,
R.
Tao
, ed.,
World Scientific
,
Singapore
, pp.
568
578
.
23.
Li
,
W. H.
, 2000, “
Rheology of MR Fluids and MR Damper Dynamic Response: Experimental and Modeling Approaches
,” Ph.D. Dissertation, School of Mechanical and Production Engineering, the Nanyang Technological University, Singapore.
24.
Wang
,
X.
, and
Gordaninejad
,
F.
, 2000, “
Study of Field-Controllable, Electro- and Magneto-Rheological Fluid Dampers in Flow Mode Using Herschel-Bulkley Theory
,”
Proceedings of the SPIE Smart Structure and Materials Conference
, Vol.
3989
,
Newport Beach
,
California
, pp.
232
243
.
25.
Lee
,
D. Y.
, and
Wereley
,
N. M.
, 2000, “
Analysis of Electro- and Magneto-Rheological Flow Mode Dampers Using Herschel-Bulkley Model
,”
Proceedings of the SPIE Smart Structures and Materials Conference
, Vol.
3989
,
Newport Beach
,
California
, pp.
244
252
.
26.
Kamath
,
G. M.
, and
Wereley
,
N. M.
, 1997, “
Nonlinear Viscoelastic-Plastic Mechanisms-Based Model of an Electrorheological Damper
,”
J. Guid. Control Dyn.
0731-5090,
20
(
6
), pp.
1125
1132
.
27.
Kamath
,
G. M.
,
Wereley
,
N. M.
, and
Jolly
,
M. R.
, 1999, “
Characterization of Magnetorheological Helicopter Lag Dampers
,”
J. Am. Helicopter Soc.
0002-8711,
44
(
3
), pp.
234
248
.
28.
Li
,
W. H.
,
Yao
,
G. Z.
,
Chen
,
G.
,
Yeo
,
S. H.
, and
Yap
,
F. F.
, 2000, “
Testing and Steady State Modeling of a Linear MR Damper Under Sinusoidal Loading
,”
Smart Mater. Struct.
0964-1726,
9
(
1
), pp.
95
102
.
29.
Gamota
,
D. R.
, and
Filisko
,
F. E.
, 1991, “
Dynamic Mechanical Studies of Electrorheological Materials: Moderate Frequencies
,”
J. Rheol.
0148-6055,
35
, pp.
399
425
.
30.
Burton
,
S. A.
,
Makris
,
N.
,
Konstantopoulos
,
I.
, and
Antsaklis
,
P. J.
, 1996, “
Modeling the Response of ER Damper: Phenomenology and Emulation
,”
J. Eng. Mech.
0733-9399,
122
(
9
), pp.
897
906
.
31.
Spencer
,
B. F.
,
Dyke
,
S. J.
,
Sain
,
M. K.
, and
Carlson
,
J. D.
, 1997, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
0733-9399,
123
(
3
), pp.
230
238
.
32.
Choi
,
S. B.
,
Lee
,
S. K.
, and
Park
,
Y. P.
, 2001,“
A Hysteresis Model for the Field-Dependent Damping Force of a Magnetorheological Damper
,”
J. Sound Vib.
0022-460X,
245
(
2
), pp.
375
383
.
33.
Ehrgott
,
R. C.
, and
Masri
,
S. F.
, 1992, “
Modeling the Oscillatory Dynamic Behavior of ER Materials
,”
Smart Mater. Struct.
0964-1726,
8
(
5
), pp.
601
615
.
34.
Gavin
,
H. P.
,
Hanson
,
R. D.
, and
Filisko
,
F. E.
, 1996, “
Electrorheological Dampers. 2. Testing and Modeling
,”
ASME J. Appl. Mech.
0021-8936,
63
(
3
), pp.
676
682
.
35.
Chang
,
C. C.
, and
Roschke
,
P.
, 1998, “
Neural Network Modeling of a Magnetorheological Damper
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
(
9
), pp.
755
764
.
36.
Leva
,
A.
, and
Piroddi
,
L.
, 2002, “
NARX-Based Technique for the Modeling of Magneto-Rheological Damping Devices
,”
Smart Mater. Struct.
0964-1726,
11
(
1
), pp.
79
88
.
37.
Gang
,
J
,
Sain
,
M. K.
,
Pham
,
K. D.
,
Spencer
,
B. F.
, and
Ramallo
,
J. C.
, 2001, “
Modeling MR-Dampers: A Nonlinear Blackbox Approach
,”
Proceedings of the 2001 American Control Conference
, (Cat. No. 01CH37148), p.
429
.
38.
Peel
,
D. J.
,
Stanway
,
R.
, and
Bullough
,
W. A.
, 1996, “
Dynamic Modeling of an ER Vibration Damper for Vehicle Suspension Applications
,”
Smart Mater. Struct.
0964-1726,
5
(
5
), pp.
591
606
.
39.
Sims
,
N. D.
,
Peel
,
D. J.
,
Stanway
,
R.
,
Johnson
,
A. R.
, and
Bullough
,
W. A.
, 2000, “
The Electrorheological Long-Stroke Damper: A New Modeling Technique With Experimental Validation
,”
J. Sound Vib.
0022-460X,
229
(
2
), pp.
207
227
.
40.
Sims
,
N. D.
,
Stanway
,
R.
,
Peel
,
D. J.
,
Bullough
,
W. A.
, and
Johnson
,
A. R.
, 1999, “
Controllable Viscous Damping: An Experimental Study of an Electrorheological Long-Stroke Damper Under Proportional Feedback Control
,”
Smart Mater. Struct.
0964-1726,
8
(
5
), pp.
601
615
.
41.
Patten
,
W. N.
,
Mo
,
C.
,
Kuehn
,
J.
, and
Lee
,
J.
, 1998, “
A Primer on Design of Semi-Active Vibration Absorbers (SAVA)
,”
J. Eng. Mech.
0733-9399,
124
(
1
), pp.
61
68
.
42.
Symans
,
M. D.
, and
Constantinou
,
M. C.
, 1997, “
Experimental Testing and Analytical Modeling of Semi-Active Fluid Dampers for Seismic Protection
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
8
), pp.
644
657
.
43.
Stringer
,
J. D.
, 1976,
Hydraulic Systems Analysis: An Introduction
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.